Package ‘dsBase’

September 5, 2019

Title DataSHIELD server site base functions

Version 5.0.0

Author DataSHIELD Developers <datashield@newcastle.ac.uk>
Maintainer DataSHIELD Developers <datashield@newcastle.ac.uk>
License GPL-3

Description DataSHIELD server site base functions.

Imports RANN,
nlme

AggregateMethods alphaPhiDS,
asFactorDS1,
asListDS,
checkNegValueDS,
covDS,
dataFrameSubsetDS1,
densityGridDS,
dimDS,
dimDS,
glmDS1,
glmDS2,
glmSLMADSI,
glmSLMADS2,
heatmapPlotDS,
histogramDS]1,
histogramDS?2,
isNaDS§,
isValidDS,
lengthDS,
lexisDS1,
listDisclosureSettingsDS,
matrixDetDS1,
meanDS,
meanDS,
meanSdGpDS,
meanSdGpDS,

messageDS,

namesDS,

numNaDS,
quantileMeanDS,
rangeDS,
recodeValuesDS1,

rmDS,

scatterPlotDS,
scoreVectDS,

setSeedDS,

table1DDS,

table2DDS,

tapplyDS,
testObjExistsDS,
tTestFDS2,

unListDS,

varDS,

class=base::class,
colnames=Dbase::colnames,
dim=base::dim,
exists=base::exists,
is.character=base::is.character,
is.factor=base::is.factor,
is.list=base::is.list,
is.null=base::is.null,
is.numeric=base::is.numeric,
length=base::length,
levels=base::levels,
Is=base::ls,
NROW=base::NROW

AssignMethods asCharacterDS,
asDataMatrixDS,
asFactorDS,
asFactorDS2,
asIntegerDS,
asListDS,
asLogicalDS,
asMatrixDS,
asMatrixDS,
asNumericDS,
BooleDS,
cbindDS,
cDS,
changeRefGroupDS,
dataFrameDS,
dataFrameFillDS,
dataFrameSortDS,
dataFrameSubsetDS?2,

listDS,

lexisDS2,

lexisDS3,
matrixDetDS2,
matrixDiagDS,
matrixDimnamesDS,
matrixDS,
matrixInvertDS,
matrixMultDS,
matrixTransposeDS,
mergeDS,

rbindDS,

rBinomDS,
recodeLevelsDS,
recodeValuesDS?2,
replaceNaDS,
reShapeDS,
rNormDS,
rowColCalcDS,
rPoisDS,

rUnifDS,

seedDS,

seqDS,
subsetByClassDS,
subsetDS,
tapplyDS.assign,
as.character=base::as.character,
as.null=base::as.null,
as.numeric=base::as.numeric,
c=base::c,
cbind=base::cbind,
complete.cases=stats::complete.cases,
exp=base::exp,
list=base::list,
log=base::log,
rep=base::rep,
sum=base::sum,
unlist=base::unlist

Options datashield.privacyLevel=5,
default.nfilter.glm=0.33,
default.nfilter KNN=3,
default.nfilter.string=80,
default.nfilter.subset=3,
default.nfilter.stringShort=20,
default.nfilter.tab=3,
default.nfilter.noise=0.25,
default.nfilter.levels=0.33

RoxygenNote 6.1.1

4 R topics documented:

R topics documented:

alphaPhiDS e 5
asCharacterDS e 6
asDataMatrixDS e e e 7
asFactorDS1 e e 8
asFactorDS2 e 8
aslntegerDS L e 9
asListDS e e e 10
asLogicalDS L 11
asMatrixDS L 11
asNumericDS e 12
BooleDS e e e e 13
cbindDS . . . L e e e 14
cDS e e e 15
changeRefGroupDS 15
checkNegValueDS 16
corDS . . e e e 17
covDS L e e e e 17
dataFrameDS e e e 18
dataFrameFillDS 20
dataFrameSortDS 20
dataFrameSubsetDS1 21
dataFrameSubsetDS2 23
densityGridDS e e 24
dimDS . . e e e e 25
glmDS1 . . e 26
glmDS2 . . e 27
giImSLMADSL e 28
glImSLMADS2 e 29
heatmapPlotDS 30
histogramDS1 e 31
histogramDS2 e 32
iSNaDS e 33
isValidDS e 33
lengthDS L L e 34
IexisDST e e e e 34
lexisDS2 e e e e 35
lexisDS3 e e e e 36
listDisclosureSettingsDS L o 36
LstDS . . e e 37
matrixDetDS1 37
matrixDetDS2 e 38
matrixDiagDS 39
matrixDimnamesDS e 40
matrixDS . . . e e 40
matrixInvertDS 41

matrixMultDS e 42

alphaPhiDS 5

matrixTransposeDS 43
meanDS . . . L L e e e e e e 43
meanSAGpDS 44
mergeDS . . L L e e 45
messageDS . .. 46
namesDS e 47
numNaDS . . . L 48
quantileMeanDS L e 48
rangeDS L L e 49
bindDS . . Lo 49
rBinomDS L e 50
recodeLevelsDS 51
recodeValuesDS1 52
recodeValuesDS2 53
replaceNaDS 54
reShapeDS 55
mDS . 56
NormDS e 57
rowColCalcDS e e 58
rPoisDS . . . L 59
rUnifDS . . . o e 60
scatterPlotDS L 61
scoreVectDS L 62
$eqDS . oL e 63
setSeedDS L e e 64
subsetByClassDS 65
subsetDS . . . e 66
tablelDDS 67
table2DDS e 68
tapplyDS . . e e e 69
tapplyDS.assign 69
testObJExistsDS L 70
unListDS . . . L 71
varDS . . e e e e 72
Index 73
alphaPhiDS Computes the parameters alpha and phi
Description

This function is called by the client function ’ds.gee’ to calculate the parameters alpha and phi.

Usage

alphaPhiDS(data, formula, family, clusterID, corstr, startBetas)

6 asCharacterDS

Arguments
data the input dataframe which contains the variable specified in the formula.
formula a regression formula.
family an object of class Family.
clusterID the name of the column that holds the cluster IDs.
corstr the correlation structure.
startBetas a character, the starting values concatenated by comma because it is not possible
to use ’c()’ in aggregate functions.
Details

the parameters are calculated according to the correlation structure.

Value

a list

Author(s)
Gaye, A.; Jones EM.

asCharacterDS Coerces an R object into class character

Description

this function is based on the native R function as.character

Usage

asCharacterDS(x.name)

Arguments
X.name the name of the input object to be coerced to class integer. Must be specified in
inverted commas. But this argument is usually specified directly by <x.name>
argument of the clientside function ds.asCharacter
Details

See help for function as.character in native R

Value

the object specified by the <newobj> argument (or its default name <x.name>.char) which is written
to the serverside. For further details see help on the clientside function ds.asCharacter

asDataMatrixDS 7

Author(s)

Amadou Gaye, Paul Burton for DataSHIELD Development Team

asDataMatrixDS asDataMatrixDS a serverside assign function called by
ds.asDataMatrix

Description

Coerces an R object into a matrix maintaining original class for all columns in data.frames.

Usage

asDataMatrixDS(x.name)

Arguments
X.nhame the name of the input object to be coerced to class data.matrix. Must be specified
in inverted commas. But this argument is usually specified directly by <x.name>
argument of the clientside function ds.asDataMatrix
Details

This assign function is based on the native R function data.matrix If applied to a data.frame, the
native R function as.matrix coverts all columns into character class. In contrast, if applied to a
data.frame the native R function data.matrix converts the data.frame to a matrix but maintains all
data columns in their original class

Value

the object specified by the <newobj> argument (or its default name <x.name>.mat) which is written
to the serverside. For further details see help on the clientside function ds.asDataMatrix

Author(s)

Paul Burton for DataSHIELD Development Team

8 asFactorDS2

asFactorDS1 Determines the levels of the input variable in each single study

Description

This function is an aggregate DataSHIELD function that returns the levels of the input variable from
each single study to the client-side function.

Usage

asFactorDS1(input.var.name = NULL)

Arguments

input.var.name the name of the variable that is to be converted to a factor.

Details

The function encodes the input vector as factor and returns its levels in ascending order if the levels
are numerical or in alphabetical order if the levels are of type character.

Value

the levels of the input variable.

asFactorDS2 Converts a numeric vector into a factor

Description

This function is an assign DataSHIELD function that converts a numeric vector into a factor type
that presented as a vector or as a matrix with dummy variables.

Usage

asFactorDS2(input.var.name = NULL, all.unique.levels.transmit = NULL,
fixed.dummy.vars = NULL, baseline.level = NULL)

asIntegerDS 9

Arguments

input.var.name the name of the variable that is to be converted to a factor.

all.unique.levels.transmit
the levels that the variable will be transmitted to.

fixed.dummy.vars
a boolean that determines whether the new object will be represented as a vector
or as a matrix of dummy variables indicating the factor level of each data point.
If this argyment is set to FALSE (default) then the input variable is converted
to a factor and assigned as a vector. If is set to TRUE then the input variable is
converted to a factor but assigned as a matrix of dummy variables.

baseline.level anumber indicating the baseline level to be used in the creation of the matrix of
dummy variables.
Details

The functions converts the input variable into a factor which is presented as a vector if the fixed.dummy.vars
is set to FALSE or as a matrix with dummy variables if the fixed.dummy.vars is set to TRUE (see
the help file of ds.asFactor.b for more details).

Value

an object of class factor

asIntegerDS Coerces an R object into class integer

Description

this function is based on the native R function as.integer

Usage

asIntegerDS(x.name)

Arguments
X.name the name of the input object to be coerced to class integer. Must be specified in
inverted commas. But this argument is usually specified directly by <x.name>
argument of the clientside function ds.asInteger
Details

See help for function as.integer in native R

Value

the object specified by the <newobj> argument (or its default name <x.name>.int) which is written
to the serverside. For further details see help on the clientside function ds.asInteger

10 asListDS

Author(s)

Amadou Gaye, Paul Burton for DataSHIELD Development Team

asListDS asListDS a serverside aggregate function called by ds.asList

Description

Coerces an R object into a list

Usage

asListDS(x.name, newobj)

Arguments
X.name the name of the input object to be coerced to class data.matrix. Must be specified
in inverted commas. But this argument is usually specified directly by <x.name>
argument of the clientside function ds.asList
newobj is the object hard assigned ’«-’ to be the output of the function written to the
serverside
Details

Unlike most other class coercing functions this is an aggregate function rather than an assign func-
tion. This is because the datashield.assign function in opal deals specially with a created object
(newobj) if it is of class list. Reconfiguring the function as an aggregate function works around
this problem. This aggregate function is based on the native R function as.list and so additional
information can be found in the help for as.list

Value

the object specified by the <newobj> argument (or its default name <x.name>.mat) which is written
to the serverside. In addition, two validity messages are returned. The first confirms an output object
has been created, the second states its class. The way that as.list coerces objects to list depends on
the class of the object, but in general the class of the output object should usually be ’list’

Author(s)

Amadou Gaye, Paul Burton for DataSHIELD Development Team

asLogicalDS 11

asLogicalDS Coerces an R object into class numeric

Description

this function is based on the native R function as.numeric

Usage

asLogicalDS(x.name)

Arguments
X.name the name of the input object to be coerced to class numeric. Must be specified in
inverted commas. But this argument is usually specified directly by <x.name>
argument of the clientside function ds.aslogical
Details

See help for function as.logical in native R

Value
the object specified by the <newobj> argument (or its default name <x.name>.logic) which is written
to the serverside. For further details see help on the clientside function ds.asLogical

Author(s)
Amadou Gaye, Paul Burton for DataSHIELD Development Team

asMatrixDS Coerces an R object into a matrix

Description

this function is based on the native R function as.matrix

Usage

asMatrixDS(x.name)

Arguments

X.name the name of the input object to be coerced to class matrix. Must be specified in
inverted commas. But this argument is usually specified directly by <x.name>
argument of the clientside function ds.asMatrix

12 asNumericDS

Details

See help for function as.matrix in native R

Value

the object specified by the <newobj> argument (or its default name <x.name>.mat) which is written
to the serverside. For further details see help on the clientside function ds.asMatrix

Author(s)

Amadou Gaye, Paul Burton for DataSHIELD Development Team

asNumericDS Coerces an R object into class numeric

Description

this function is based on the native R function as.numeric

Usage

asNumericDS(x.name)

Arguments
X.name the name of the input object to be coerced to class numeric. Must be specified in
inverted commas. But this argument is usually specified directly by <x.name>
argument of the clientside function ds.asNumeric
Details

See help for function as.numeric in native R

Value

the object specified by the <newobj> argument (or its default name <x.name>.num) which is written
to the serverside. For further details see help on the clientside function ds.asNumeric

Author(s)

Amadou Gaye, Paul Burton for DataSHIELD Development Team

BooleDS 13

BooleDS BooleDS

Description

Converts the individual elements of a vector or other object into Boolean indicators.

Usage

BooleDS(V1.name = NULL, V2.name = NULL, Boolean.operator.n = NULL,
na.assign.text, numeric.output = TRUE)

Arguments
V1.name A character string specifying the name of the vector to which the Boolean oper-
ator is to be applied
V2.name A character string specifying the name of the vector or scalar to which <V1> is

to be compared.

Boolean.operator.n
An integer value (1 to 6) providing a numeric coding for the character string
specifying one of six possible Boolean operators: ’==’, ’!1=", ’>’, ">=""<’ <=’
that could legally be passed from client to server via DataSHIELD parser

na.assign.text A character string taking values 'NA’, ’1’ or ’0’. If "NA’ then any NA values in
the input vector remain as NAs in the output vector. If "1’ or 0’ NA values in
the input vector are all converted to 1 or O respectively.# @return the levels of
the input variable.

numeric.output a TRUE/FALSE indicator defaulting to TRUE determining whether the final
output variable should be of class numeric (1/0) or class logical (TRUE/FALSE).

Details

The function converts the input vector into Boolean indicators.

Author(s)

DataSHIELD Development Team

14 cbindDS

cbindDS cbindDS called by ds.cbind ¢

Description

serverside assign function that takes a sequence of vector, matrix or data-frame arguments and
combines them by column to produce a matrix.

Usage

cbindDS(x.names.transmit = NULL, colnames.transmit = NULL)

Arguments

x.names.transmit
This is a vector of character strings representing the names of the elemental com-
ponents to be combined converted into a transmittable format. This argument is
fully specified by the <x> argument of ds.cbind

colnames.transmit
This is NULL or a vector of character strings representing forced column names
for the output object converted into a transmittable format. This argument is
fully specified by the <force.colnames> argument of ds.cbind.

Details

A sequence of vector, matrix or data-frame arguments is combined column by column to produce
a matrix which is written to the serverside. For more details see help for ds.cbind and the native R
function cbind.

Value

the object specified by the <newobj> argument of ds.cbind(or default name <cbind.out>) which is
written to the serverside. Just like the cbind function in native R, the output object is of class matrix
unless one or more of the input objects is a data.frame in which case the class of the output object
is data.frame. As well as writing the output object as <newobj> on the serverside, two validity
messages are returned indicating whether <newobj> has been created in each data source and if so
whether it is in a valid form. If its form is not valid in at least one study - e.g. because a disclosure
trap was tripped and creation of the full output object was blocked - ds.cbind() also returns any
studysideMessages that can explain the error in creating the full output object. As well as appearing
on the screen at run time,if you wish to see the relevant studysideMessages at a later date you
can use the ds.message function. If you type ds.message("<newobj>") it will print out the relevant
studysideMessage from any datasource in which there was an error in creating <newobj> and a
studysideMessage was saved. If there was no error and <newobj> was created without problems
no studysideMessage will have been saved and ds.message("<newobj>") will return the message:
"ALL OK: there are no studysideMessage(s) on this datasource".

cDS 15

Author(s)
Paul Burton for DataSHIELD Development Team

cDS Concatenates objects into a vector or list

Description

This function is similar to the R base function ’c’.

Usage
cDS(objs)

Arguments

objs a list which contains the the objects to concatenate.

Details

Unlike the R base function ’¢’ on vector or list of certain length are allowed as output

Value

a vector or list

Author(s)
Gaye, A.

changeRefGroupDS Changes a reference level of a factor

Description

This function is similar to R function relevel,

Usage
changeRefGroupDS(xvect, ref = NULL, reorderByRef = NULL)

Arguments
xvect a factor vector
ref a character, the reference level

reorderByRef a boolean that tells whether or not the new vector should be ordered by the
reference group.

16 checkNeg ValueDS

Details

In addition to what the R function does, this function allows for the user to re-order the vector,
putting the reference group first. If the user chooses the re-order a warning is issued as this can
introduce a mismatch of values if the vector is put back into a table that is not reordered in the same
way. Such mismatch can render the results of operations on that table invalid.

Value

a factor of the same length as xvect

Author(s)

Isaeva, J., Gaye, A.

checkNegValueDS Checks if a numeric variable has negative values

Description

this function is only called by the client function ds. glm.

Usage

checkNegValueDS(weights)

Arguments

weights a numeric vector

Details

if a user sets the parameter *weights’ on the client site function ds.glm this server side function
is called to verify that the *weights’ vector does not have negative values because no negative are
allowed in weights.

Value

a boolean; TRUE if the vector has one or more negative values and FALSE otherwise

Author(s)
Gaye, A.

corDS 17

corDS Computes correlation between two or more vectors

Description

this function is similar to R function ’cor’

Usage

corDS(x = NULL, y = NULL, use = NULL)

Arguments
X a character, the name of a vector, dataframe or matrix
y (optional) a character, the name of a vector, dataframe or matrix
use a character string giving a method for computing covariances in the presence
of missing values. This must be one of the strings: "everything", "all.obs",
"complete.obs", "na.or.complete”, or "pairwise.complete.obs".
Value
correlation
Author(s)
Gaye, A.
covDS Computes the sum of each variable and the sum of products for each
pair of variables
Description

This function computes the sum of each vector of variable and the sum of the products of each two
variables (i.e. the scalar product of each two vectors).

Usage

covDS(x = NULL, y = NULL, use = NULL)

18

Arguments

X

use

Details

dataFrameDS

a character, the name of a vector, matrix or dataframe of variable(s) for which
the covariance(s) and the correlation(s) is (are) going to calculated for.

NULL (default) or the name of a vector, matrix or dataframe with compatible
dimensions to X.

a character string giving a method for computing covariances in the presence of
missing values. This must be one of the strings "casewise.complete" or "pair-
wise.complete". If use is set to *casewise.complete’ then any rows with missing
values are omitted from the vector, matrix or dataframe before the calculations
of the sums. If use is set to *pairwise.complete’ (which is the default case set on
the client-side), then the sums of products are computed for each two variables
using only the complete pairs of observations on the two variables.

computes the sum of each vector of variable and the sum of the products of each two variables

Value

a list tha includes a matrix with elements the sum of products between each two variables, a matrix
with elements the sum of the values of each variable, a matrix with elements the number of complete
cases in each pair of variables, a list with the number of missing values in each variable separately
(columnwise) and the number of missing values casewise or pairwise depending on the arqument
use, and an error message which indicates whether or not the input variables pass the disclosure

control (i.e. none
threshold). If any

of them is dichotomous with a level having less counts than the pre-specified
of the input variables does not pass the disclosure control then all the output

values are replaced with NAs

Author(s)

Gaye A., Avraam D., Burton P.

dataFrameDS

dataFrameDS called by ds.dataFrame

Description

The serverside function that creates a data frame from its elemental components. That is: pre-
existing data frames; single variables; and/or matrices

Usage

dataFrameDS(vectors = NULL, r.names = NULL, ch.rows = FALSE,
ch.names = TRUE, clnames = NULL, strAsFactors = TRUE,

completeCases

= FALSE)

dataFrameDS

Arguments

vectors

r.names

ch.rows

ch.names

clnames

strAsFactors

completeCases

Details

19

a list which contains the elemental components to combine. These correspond to
the vector of character strings specified in argument x of the clientside function
ds.dataFrame()

NULL or a character vector specifying the names of the rows. Default NULL.

logical, if TRUE then the rows are checked for consistency of length and names.
Default FALSE.

logical, if TRUE then the names of the variables in the data frame are checked
to ensure that they are syntactically valid variable names and are not duplicated.
Default TRUE. In fact, the clientside function ensures no duplicated names can
be presented to dataFrameDS but this argument is kept to check for other forms
of syntactic validity.

a list of characters, the column names of the output data frame. These are gener-
ated by the clientside function from the names of vectors, and the column names
of data.frames and matrices being combined in producing the output data.frame

logical, if TRUE determines whether character vectors should automatically be
converted to factors? Default TRUE.

logical. If TRUE indicates that only complete cases should be included: any
rows with missing values in any component will be excluded. Default FALSE.

A data frame is a list of variables all with the same number of rows with unique row names, which
is of class ’data.frame’. ds.dataFrame will create a data frame by combining a series of elemental
components which may be pre-existing data.frames, matrices or variables. A critical requirement
is that the length of all component variables, and the number of rows of the component data.frames
or matrices must all be the same. The output data.frame will then have this same number of rows.
The serverside function dataFrameDS() calls the native R function data.frame() and several of its
arguments are precisely the same as for data.frame(). In consequence, additional information can
be sought from the help() for data.frame().

Value

a dataframe composed of the specified elemental components will be created on the serverside and
named according to the <newobj> argument of the clientside function ds.dataFrame()

Author(s)

DataSHIELD Development Team

20 dataFrameSortDS

dataFrameFillDS dataFrameFillIDS

Description

An assign function called by the clientside ds.dataFrameFill function.

Usage

dataFrameFillDS(df.name, allNames.transmit)

Arguments

df .name a character string representing the name of the input data frame that will be filled
with extra columns with missing values if a number of variables is missing from
it compared to the data frames of the other studies used in the analysis.
allNames.transmit
unique names of all the variables that are included in the input data frames from
all the used datasources.

Details

This function checks if each study has all the variables compared to the other studies in the analysis.
If a study does not have some of the variables, the function generates those variables as vectors of
missing values and combines them as columns to the input data frame. Then, the "complete" in
terms of the columns dataframe is saved in each server with a name specified by the argument
newobj on the clientside.

Value

Nothing is returned to the client. The generated object is written to the serverside.

Author(s)

Demetris Avraam for DataSHIELD Development Team

dataFrameSortDS dataFrameSortDS called by ds.dataFrameSort

Description

The serverside function that sorts a data frame using a specified sort key.

dataFrameSubsetDS 1 21

Usage

dataFrameSortDS(df.text = NULL, sort.key.text = NULL,
sort.descending = FALSE, sort.alphabetic = FALSE,
sort.numeric = FALSE)

Arguments

df . text a character string providing the name for the data.frame to be sorted. This cor-
responds to the argument <df.name> in ds.dataFrameSort

sort.key.text a character string providing the name for the sort key. This corresponds to the
argument <sort.key.name> in ds.dataFrameSort

sort.descending
logical, if TRUE the data.frame will be sorted by the sort key in descending
order. Default = FALSE (sort order ascending)

sort.alphabetic
logical, if TRUE the sort key is treated as if alphabetic Default=FALSE.

sort.numeric logical, if TRUE the sort key is treated as if numeric Default=FALSE. The argu-
ments <sort.alphabetic> and <sort.numeric> are both derived directly from the
corresponding arguments specified in ds.dataFrameSort If both sort.alphabetic
and sort.numeric are FALSE, the sort.key will interpreted naturally: as numeric
if it is numeric, otherwise as alphabetic ie as if it is a vector of character strings.

Details

A data frame is a list of variables all with the same number of rows, which is of class ’data.frame’.
For details of numeric and alphabetic sorting and how ds.dataFrameSort/dataFrameSortDS jointly
operate, please see help for ds.dataFrameSort.

Value

the appropriately re-sorted data.frame will be written to the serverside R environmnet as a data.frame
named according to the <newobj> argument in ds.dataFrameSortDS (or with default name <df.name>.sorted
where <df.name> is the first argument of ds.dataFrameSortDS)

Author(s)
DataSHIELD Development Team

dataFrameSubsetDS1 dataFrameSubsetDSI an aggregate function called by
ds.dataFrameSubset

Description

First serverside function for subsetting a data frame by row or by column.

22 dataFrameSubsetDS 1

Usage

dataFrameSubsetDS1(df.name = NULL, V1.name = NULL, V2.name = NULL,
Boolean.operator.n = NULL, keep.cols = NULL, rm.cols = NULL,
keep.NAs = NULL)

Arguments
df.name a character string providing the name for the data.frame to be sorted. <df.name>
argument generated and passed directly to dataFrameSubsetDS1 by ds.dataFrameSubset
V1.name A character string specifying the name of a subsetting vector to which a Boolean
operator will be applied to define the subset to be created. <V 1.name> argument
generated and passed directly to dataFrameSubsetDS1 by ds.dataFrameSubset
V2.name A character string specifying the name of the vector or scalar to which the

values in the vector specified by the argument <V1.name> is to be compared.
<V2.name> argument generated and passed directly to dataFrameSubsetDS1 by
ds.dataFrameSubset

Boolean.operator.n

k)

A character string specifying one of six possible Boolean operators: '==", ’!=",
» et vt

>’ ’>=", ’<’, ’<=" <Boolean.operator.n> argument generated and passed di-
rectly to dataFrameSubsetDS1 by ds.dataFrameSubset

keep.cols a numeric vector specifying the numbers of the columns to be kept in the final
subset when subsetting by column. For example: keep.cols=c(2:5,7,12) will
keep columns 2,3,4,5,7 and 12. <keep.cols> argument generated and passed
directly to dataFrameSubsetDS1 by ds.dataFrameSubset

rm.cols a numeric vector specifying the numbers of the columns to be removed before
creating the final subset when subsetting by column. For example: rm.cols=c(2:5,7,12)
will remove columns 2,3,4,5,7 and 12. <rm.cols> argument generated and passed
directly to dataFrameSubsetDS1 by ds.dataFrameSubset

keep.NAs logical, if TRUE any NAs in the vector holding the final Boolean vector indi-
cating whether a given row should be included in the subset will be converted
into 1s and so they will be included in the subset. Such NAs could be caused by
NAs in either <V1.name> or <V2.name>. If FALSE or NULL NAs in the final
Boolean vector will be converted to Os and the corresponding row will there-
fore be excluded from the subset. <keep.NAs> argument generated and passed
directly to dataFrameSubsetDS1 by ds.dataFrameSubset

Details
A data frame is a list of variables all with the same number of rows, which is of class ’data.frame’.
For all details see the help header for ds.dataFrameSubset

Value

This first serverside function called by ds.dataFrameSubset provides first level traps for a compre-
hensive series of disclosure risks which can be returned directly to the clientside because dataFrame-
SubsetDS1 is an aggregate function. The second serverside function called by ds.dataFrameSubset

dataFrameSubsetDS2 23

(dataFrameSubsetDS2) carries out most of the same disclosure tests, but it is an assign function be-
cause it writes the subsetted data.frame to the serverside. In consequence, it records error messages
as studysideMessages which can only be retrieved using ds.message

Author(s)
DataSHIELD Development Team

dataFrameSubsetDS2 dataFrameSubsetDS2 an assign function called by
ds.dataFrameSubset

Description

Second serverside function for subsetting a data frame by row or by column.

Usage

dataFrameSubsetDS2(df.name = NULL, V1.name = NULL, V2.name = NULL,
Boolean.operator.n = NULL, keep.cols = NULL, rm.cols = NULL,
keep.NAs = NULL)

Arguments
df.name a character string providing the name for the data.frame to be sorted. <df.name>
argument generated and passed directly to dataFrameSubsetDS2 by ds.dataFrameSubset
V1.name A character string specifying the name of a subsetting vector to which a Boolean
operator will be applied to define the subset to be created. <V 1.name> argument
generated and passed directly to dataFrameSubsetDS2 by ds.dataFrameSubset
V2.name A character string specifying the name of the vector or scalar to which the

values in the vector specified by the argument <V1.name> is to be compared.
<V2.name> argument generated and passed directly to dataFrameSubsetDS2 by
ds.dataFrameSubset

Boolean.operator.n
A character string specifying one of six possible Boolean operators: '==", ’|=’,

>, '>=", ’<’, ’<=" <Boolean.operator.n> argument generated and passed di-
rectly to dataFrameSubsetDS2 by ds.dataFrameSubset

keep.cols a numeric vector specifying the numbers of the columns to be kept in the final
subset when subsetting by column. For example: keep.cols=c(2:5,7,12) will
keep columns 2,3,4,5,7 and 12. <keep.cols> argument generated and passed
directly to dataFrameSubsetDS2 by ds.dataFrameSubset

rm.cols a numeric vector specifying the numbers of the columns to be removed before
creating the final subset when subsetting by column. For example: rm.cols=c(2:5,7,12)
will remove columns 2,3,4,5,7 and 12. <rm.cols> argument generated and passed
directly to dataFrameSubsetDS2 by ds.dataFrameSubset

24

densityGridDS

keep.NAs logical, if TRUE any NAs in the vector holding the final Boolean vector indi-
cating whether a given row should be included in the subset will be converted
into 1s and so they will be included in the subset. Such NAs could be caused by
NAs in either <V1.name> or <V2.name>. If FALSE or NULL NAs in the final
Boolean vector will be converted to Os and the corresponding row will there-
fore be excluded from the subset. <keep.NAs> argument generated and passed
directly to dataFrameSubsetDS2 by ds.dataFrameSubset

Details

A data frame is a list of variables all with the same number of rows, which is of class ’data.frame’.
For all details see the help header for ds.dataFrameSubset

Value

the object specified by the <newobj> argument (or default name ’<df.name>_subset’) initially
specified in calling ds.dataFrameSubset. The output object (the required subsetted data.frame
called <newobj> is written to the serverside. In addition, two validity messages are returned via
ds.dataFrameSubset indicating whether <newobj> has been created in each data source and if so
whether it is in a valid form. If its form is not valid in at least one study - e.g. because a
disclosure trap was tripped and creation of the full output object was blocked - dataFrameSub-
setDS?2 (via ds.dataFrame()) also returns any studysideMessages that can explain the error in cre-
ating the full output object. As well as appearing on the screen at run time,if you wish to see
the relevant studysideMessages at a later date you can use the ds.message function. If you type
ds.message("newobj") it will print out the relevant studysideMessage from any datasource in which
there was an error in creating <newobj> and a studysideMessage was saved. If there was no er-
ror and <newobj> was created without problems no studysideMessage will have been saved and
ds.message("newobj") will return the message: "ALL OK: there are no studysideMessage(s) on
this datasource".

Author(s)

DataSHIELD Development Team

densityGridDS Generates a density grid with or without a priori defined limits

Description

Generates a density grid that can then be used for heatmap or countour plots.

Usage

densityGridDS(xvect, yvect, limits = FALSE, x.min = NULL,
x.max = NULL, y.min = NULL, y.max = NULL, numints = 20)

dimDS

Arguments

xvect
yvect

limits

X.min
X.max
y.min
y.max

numints

Details

25

a numerical vector
a numerical vector

a logical expression for whether or not limits of the density grid are defined by
auser. If 1imits is set to "FALSE", min and max of xvect and yvect are used as
arange. If limits is set to "TRUE", limits defined by x.min, x.max, y.min and
y.max are used.

a minimum value for the x axis of the grid density object, if needed
a maximum value for the x axis of the grid density object, if needed
a minimum value for the y axis of the grid density object, if needed
a maximum value for the y axis of the grid density object, if needed

a number of intervals for the grid density object, by default is 20

Invalid cells (cells with count < to the set filter value for the minimum allowed counts in table cells)

are turn to 0.

Value

a grid density matrix

Author(s)

Julia Isaeva, Amadou Gaye, Demetris Avraam for DataSHIELD Development Team

dimDS

Returns the dimension of a data frame or matrix

Description

This function is similar to R function dim.

Usage
dimDS(x)

Arguments

X

Details

a string character, the name of a dataframe or matrix

The function returns the dimension of the input dataframe or matrix

26 glmDS1

Value

the dimension of the input object

Author(s)

Demetris Avraam, for DataSHIELD Development Team

glmDS1 glmDS1 called by ds.glm

Description

This is the first serverside aggregate function called by ds.glm

Usage

glmDS1(formula, family, weights, offset, data)

Arguments
formula a glm() formula consistent with R syntax eg U~x+y+Z to regress variables U on
X,y and Z
family a glm() family consistent with R syntax eg "gaussian", "poisson", "binomial"
weights an optional variable providing regression weights
offset the offset
data an optional character string specifying a data.frame object holding the data to be
analysed under the specified model
Details

It is an aggregation function that sets up the model structure and creates the starting beta.vector that
feeds, via ds.glm, into glmDS?2 to enable iterative fitting of the generalized linear model that has
been been specified. For more details please see the extensive header for ds.glm.

Author(s)

Burton PR for DataSHIELD Development Team

glmDS2

27

glmDS2

glmDS?2 called by ds.glm

Description

This is the second serverside aggregate function called by ds.glm.

Usage

glmDS2(formula, family, beta.vect, offset, weights, dataName)

Arguments

formula

family

beta.vect

offset
weights

dataName

Details

a glm() formula consistent with R syntax eg U~x+y+Z to regress variables U on
x,y and Z

a glm() family consistent with R syntax eg "gaussian", "poisson", "binomial"

a numeric vector created by the clientside function specifying the vector of re-
gression coefficients at the current iteration

an optional variable providing a regression offset
an optional variable providing regression weights

an optional character string specifying a data.frame object holding the data to be
analysed under the specified model same

It is an aggregation function that uses the model structure and starting beta.vector constructed by
glmDS1 to iteratively fit the generalized linear model that has been been specified. The function
glmDS?2 also carries out a series of disclosure checks and if the arguments or data fail any of those
tests, model construction is blocked and an appropriate serverside error message is created and
returned to ds.glm on the clientside. For more details please see the extensive header for ds.glm.

Author(s)

Burton PR for DataSHIELD Development Team

28 glmSLMADS1
g1lmSLMADS1 gImSLMADSI called by ds.gImSLMA
Description
This is the first serverside aggregate function called by ds.gImSLMA
Usage
gImSLMADS1 (formula, family, weights, offset, data)
Arguments
formula a glm() formula consistent with R syntax eg U~x+y+Z to regress variables U on
x,y and Z. Fully specified by <formula> argument in ds.glmSLMA
family a glm() family consistent with R syntax eg "gaussian", "poisson"”, "binomial".
Fully specified by <family> argument in ds.glmSLMA
weights an optional variable name (as a character sting) identifying a vector of prior
regression weights. Fully specified by <weights> argument in ds.glmSLMA
offset an optional variable name (as a character string) identifying an offset vector.
Fully specified by <offset> argument in ds.glmSLMA
data an optional character string specifying the name of a data.frame object holding
the data to be analysed under the specified model. Fully specified by <dataName>
argument in ds.glmSLMA
Details
It is an aggregate function that sets up the generalized linear model structure and feeds this structural
information via ds.glmSLMA into the call to glmSLMADS?2 that enacts fitting of the specified
generalized linear model (to completion) in each of the studies to be included in the study-level
meta-analysis. For more details please see the extensive header for ds.gImSLMA in DataSHIELD
and help on the glm function in native R.
Value
All quantitative, Boolean, and character objects required by gImSLMADS?2 to fit the glm in each
study. Also, returns warning flags and associated information enabling DataSHIELD to halt analysis
in any given study if a disclosure trap is triggered and to inform the user what trap has been triggered.
Author(s)

Paul Burton for DataSHIELD Development Team

gImSLMADS?2 29

g1mSLMADS2 gImSLMADS? called by ds.glmSLMA

Description

This is the second serverside aggregate function called by ds.gImSLMA

Usage

glmSLMADS2 (formula, family, offset, weights, dataName)

Arguments
formula a glm() formula consistent with R syntax eg U~x+y+Z to regress variables U on
%,y and Z. Fully specified by <formula> argument in ds.glmSLMA
family a glm() family consistent with R syntax eg "gaussian", "poisson", "binomial".
Fully specified by <family> argument in ds.glmSLMA
offset an optional variable name (as a character string) identifying an offset vector.
Fully specified by <offset> argument in ds.glmSLMA
weights an optional variable name (as a character sting) identifying a vector of prior
regression weights. Fully specified by <weights> argument in ds.glmSLMA
dataName an optional character string specifying the name of a data.frame object holding
the data to be analysed under the specified model. Fully specified by <dataName>
argument in ds.glmSLMA
Details

ds.glImSLMA specifies the structure of a generalized linear model (glm) to be fitted separately
on each study. The model is first constructed and subject to preliminary disclosure checking by
glmSLMADSI. This aggregate function then returns this output to ds.glmSLMA which processes
the information and uses it in a call to gImSLMADS?2. This call specifies and fits the required
glm in each data source. Unlike glmDS2 (called by the more commonly used generalized linear
modelling client-side function ds.glm) the requested model is then fitted to completion on the data
in each study rather than iteration by iteration on all studies combined. At the end of this SLMA
fitting process glmSLMADS?2 returns study-specific parameter estimates and standard errors to the
client. These can then be pooled using random effects (or fixed effects) meta-analysis - eg using the
metafor package. This mode of model fitting may reasonably be called study level meta-analysis
(SLMA) although the analysis is based on estimates and standard errors derived from direct analysis
of the individual level data in each study rather than from published study summaries (as is often
the case with SLMA of clinical trials etc). Furthermore, unlike common approaches to study-
level meta-analysis adopted by large multi-study research consortia (eg in the combined analysis
of identical genomic markers across multiple studies), the parallel analyses (in every study) under
ds.glImSLMA are controlled entirely from one client. This avoids the time-consuming need to ask
each study to run its own analyses and the consequent necessity to request additional work from
individual studies if the modelling is to be extended to include analyses not subsumed in the original
analytic plan. Additional analyses of this nature may, for example, include analyses based on

30

heatmapPlotDS

interactions between covariates identified as having significant main effects in the original analysis.
From a mathematical perspective, the SLMA approach (using ds.glmSLMA) differs fundamentally
from the usual approach using ds.glm in that the latter is mathematically equivalent to placing
all individual-level data from all sources in one central warehouse and analysing those data as
one combined dataset using the conventional glm() function in R. However, although this may
sound to be preferable under all circumstances, the SLMA approach actually offers key inferential
advantages when there is marked heterogeneity between sources that cannot simply be corrected
with fixed effects each reflecting a study or centre-effect. In particular, fixed effects cannot simply
be used in this way when there there is heterogeneity in the effect that is of scientific interest. For
more details please see the extensive header for ds.glmSLMA in DataSHIELD and help on the glm
function in native R.

Value

All quantitative, Boolean, and character objects required to enable the SLMA pooling of the sep-
arate glm models fitted to each study - in particular including the study-specific regression coef-
ficients and their corresponding standard errors. Also, returns warning flags and associated infor-
mation enabling DataSHIELD to halt analysis and destroy model output from any given study if a
disclosure trap is triggered and to inform the user what trap has been triggered.

Author(s)

Burton PR

heatmapPlotDS Calculates the coordinates of the centroid of each n nearest neighbours

Description

This function calculates the coordinates of the centroids for each n nearest neighbours.

Usage

heatmapPlotDS(x, y, k, noise, method.indicator)

Arguments
X the name of a numeric vector, the x-variable.
the name of a numeric vector, the y-variable.
k the number of the nearest neghbours for which their centroid is calculated if the
method. indicator is equal to 1 (i.e. deterministic method).
noise the percentage of the initial variance that is used as the variance of the embedded

noise if the method. indicator is equal to 2 (i.e. probabilistic method).
method.indicator

a number equal to either 1 or 2. If the value is equal to 1 then the ’deterministic’
method is used. If the value is set to 2 the *probabilistic’ method is used.

histogramDS 1 31

Details

The function finds the n-1 nearest neighbours of each data point in a 2-dimensional space. The
nearest neighbours are the data points with the minimum Euclidean distances from the point of
interest. Each point of interest and its n-1 nearest neighbours are then used for the calculation of the
coordinates of the centroid of those n points. Centroid here is referred to the centre of mass, i.e. the
x-coordinate of the centroid is the average value of the x-coordinates of the n nearest neighbours
and the y-coordinate of the centroid is the average of the y-coordinates of the n nearest neighbours.
The coordinates of the centroids return to the client side function and can be used for the plot of
non-disclosive graphs (e.g. scatter plots, heatmap plots, contour plots, etc).

Value

a list with the x and y coordinates of the centroids if the deterministic method is used or the x and y
coordinated of the noisy data if the probabilistic method is used.

Author(s)

Demetris Avraam for DataSHIELD Development Team

histogramDS1 returns the minimum and the maximum of the input numeric vector

Description

this function returns the minimum and maximum of the input numeric vector which depends on
the argument method. indicator. If the method.indicator is set to 1 (i.e. the ’smallCellsRule’ is
used) the computed minimum and maximum values are multiplied by a very small random number.
If the method.indicator is set to 2 (i.e. the ’deteministic’ method is used) the function returns the
minimum and maximum values of the vector with the scaled centroids. If the method.indicator is
set to 3 (i.e. the ’probabilistic’ method is used) the function returns the minimum and maximum
values of the generated 'noisy’ vector.

Usage

histogramDS1(xvect, method.indicator, k, noise)

Arguments

xvect the numeric vector for which the histogram is desired.

method. indicator
a number equal to either 1, 2 or 3 indicating the method of disclosure control
that is used for the generation of the histogram. If the value is equal to 1 then
the ’smallCellsRule’ is used. If the value is equal to 2 then the ’deterministic’
method is used. If the value is set to 3 then the ’probabilistic’ method is used.

k the number of the nearest neghbours for which their centroid is calculated if the
method. indicator is equal to 2 (i.e. deterministic method).

noise the percentage of the initial variance that is used as the variance of the embedded
noise if the method. indicator is equal to 3 (i.e. probabilistic method).

32 histogramDS?2

Value

a numeric vector which contains the minimum and the maximum values of the vector

Author(s)

Amadou Gaye, Demetris Avraam for DataSHIELD Development Team

histogramDS2 Computes a histogram of the input variable without plotting.

Description

This function produces the information required to plot a histogram. This is done without allowing
for bins (cells) with number of counts less than the pre-specified disclosure control set for the
minimum cell size of a table. If a bin has less counts than this threshold then their counts and its
density are replaced by a O value.

Usage

histogramDS2(xvect, num.breaks, min, max, method.indicator, k, noise)

Arguments
xvect the numeric vector for which the histogram is desired.
num.breaks the number of breaks that the range of the variable is divided.
min a numeric, the lower limit of the distribution.
max a numeric, the upper limit of the distribution.

method.indicator
a number equal to either 1, 2 or 3 indicating the method of disclosure control
that is used for the generation of the histogram. If the value is equal to 1 then
the ’smallCellsRule’ is used. If the value is equal to 2 then the ’deterministic’
method is used. If the value is set to 3 then the ’probabilistic’ method is used.

k the number of the nearest neghbours for which their centroid is calculated if the
method. indicator is equal to 2 (i.e. deterministic method).

noise the percentage of the initial variance that is used as the variance of the embedded
noise if the method. indicator is equal to 3 (i.e. probabilistic method).

Details

Please find more details in the documentation of the clientside ds.histogram function.

Value

a list with an object of class histogram and the number of invalid cells

Author(s)

Amadou Gaye, Demetris Avraam for DataSHIELD Development Team

isNaDS 33

isNaDS Checks if a vector is empty

Description
this function is similar to R function is.na but instead of a vector of booleans it returns just one
boolean to tell if all the element are missing values.

Usage

isNaDS(xvect)

Arguments

xvect a numerical or character vector

Value

the integer *1’ if the vector contains on NAs and ’0’ otherwise

Author(s)
Gaye, A.

isValidDS Checks if an input is valid

Description

Tells if an object on the server side is valid.

Usage
isValidDS(obj)

Arguments

obj, a vector (numeric, integer, factor, character), data.frame or matrix

Details

This function checks if an object is valid.

Value

a boolean, TRUE if input is valid or FALSE if not.

34 lexisDS1

Author(s)
Gaye, A.

lengthDS Returns the length of a vector or list

Description

This function is similar to R function length.

Usage
lengthDS(x)

Arguments

X a string character, the name of a vector or list

Details

The function returns the length of the input vector or list.

Value

a numeric, the number of elements of the input vector or list.

Author(s)

Demetris Avraam, for DataSHIELD Development Team

lexisDS1 lexisDS1

Description

The first serverside function called by ds.lexis.

Usage
lexisDS1(exitCol = NULL)

Arguments

exitCol a character string specifying the variable holding the time that each individual is
censored or fails

lexisDS2

Details

35

This is an aggregate function. For more details see the extensive header for ds.lexis.

Author(s)
Burton PR

lexisDS2

lexisDS2

Description

The second serverside function called by ds.lexis.

Usage

lexisDS2(datatext = NULL, intervalWidth, maxmaxtime, idCol, entryCol,
exitCol, statusCol, vartext = NULL)

Arguments

datatext
intervalWidth
maxmaxtime
idCol
entryCol
exitCol
statusCol

vartext

Details

a clientside provided character string specifying the data.frame holding the data
set to be expanded

a clientside generated character string specifying the width of the survival epochs
in the expanded data

a clientside generated object specifying the maximum follow up time in any of
the sources

a clientside generated character string specifying the variable holding the IDs of
indivuals in the data set to be expanded

a clientside specified character string identifying the variable holding the time
that each individual starts follow up

a clientside specified character string identifying the variable holding the time
that each individual ends follow up (is censored or fails)

a clientside specified character string identifying the variable holding the final
censoring status (failed/censored)

is a clientside provided vector of character strings denoting the column names
of additional variables to include in the final expanded table. If the ’variables’
argument is not set (is null) but the *data’ argument is set the full data.frame will
be expanded and carried forward

This is the assign function which actually creates the expanded dataframe containing surival data
for a piecewise exponential regression. lexisDS2 also carries out a series of disclosure checks and
if the arguments or data fail any of those tests, creation of the exapanded dataframe is blocked and
an appropriate serverside error message is stored. For more details see the extensive header for

ds.lexis.

36 listDisclosureSettingsDS

Author(s)
Burton PR

lexisDS3 @title lexisDS3

Description

The third serverside function called by ds.lexis.

Usage

lexisDS3()

Details

This is an assign function that simplifies the returned output from ds.lexis. Specifically, without lex-
isDS3 the output consists of a table within a list, but lexisDS3 converts this directly into a dataframe.
For more details see the extensive header for ds.lexis.

listDisclosureSettingsDS
listDisclosureSettingsDS

Description

This serverside function is an aggregate function that is called by the ds.listDisclosureSettings

Usage

listDisclosureSettingsDS()

Details

For more details see the extensive header for ds.listDisclosureSettings

Author(s)

Paul Burton, Demetris Avraam for DataSHIELD Development Team

listDS 37

1istDS Coerce objects into a list

Description

this function is similar to R function ’list’

Usage

listDS(input = NULL, eltnames = NULL)

Arguments

input a list of objects to coerce into a list

eltnames a character list, the names of the elements in the list.
Details

Unlike the R function ’list’ it takes also a vector of characters, the names of the elements in the
output list.

Value

a list

Author(s)
Gaye, A.

matrixDetDS1 matrixDetDS aggregate function called by ds.matrixDet.report

Description

Calculates the determinant of a square matrix A and returns the output to the clientside

Usage
matrixDetDS1(M1.name = NULL, logarithm)

Arguments
M1.name A character string specifying the name of the matrix for which determinant to
be calculated
logarithm logical. Default is FALSE, which returns the determinant itself, TRUE returns

the logarithm of the modulus of the determinant.

38 matrixDetDS2

Details
Calculates the determinant of a square matrix (for additional information see help for det function
in native R). This operation is only possible if the number of columns and rows of A are the same.
Value
Output is the determinant of the matrix identified by argument <M1> which is returned to the
clientside. For more details see help for ds.matrixDet
Author(s)
Paul Burton for DataSHIELD Development Team

matrixDetDS2 matrixDetDS assign function called by ds.matrixDet

Description

Calculates the determinant of a square matrix A and writes the output to the serverside

Usage

matrixDetDS2(M1.name = NULL, logarithm)

Arguments
M1.name A character string specifying the name of the matrix for which determinant to
be calculated
logarithm logical. Default is FALSE, which returns the determinant itself, TRUE returns
the logarithm of the modulus of the determinant.
Details

Calculates the determinant of a square matrix (for additional information see help for det function
in native R). This operation is only possible if the number of columns and rows of A are the same.
Value
Output is the determinant of the matrix identified by argument <M 1> which is written to the server-
side. For more details see help for ds.matrixDet
Author(s)

Paul Burton for DataSHIELD Development Team

matrixDiagDS 39

matrixDiagDS matrixDiagDS assign function called by ds.matrixDiag

Description

Extracts the diagonal vector from a square matrix A or creates a diagonal matrix A based on a vector
or a scalar value and writes the output to the serverside

Usage

matrixDiagDS(x1.transmit, aim, nrows.transmit)

Arguments
x1.transmit identifies the input matrix or vector. Fully specified by <x1> argument of ds.matrixDiag.
For more details see help for ds.matrixDiag.
aim a character string specifying what behaviour is required of the function. Fully

specified by <aim> argument of ds.matrixDiag. For more details see help for
ds.matrixDiag.

nrows.transmit a scalar value forcing the number of rows and columns in an output matrix.Fully
specified by <nrows.scalar> argument of ds.matrixDiag. For more details see
help for ds.matrixDiag.

Details

For details see help for function ds.matrixDiag.

Value

Output is the matrix or vector specified by the <newobj> argument (or default name diag_<x1>)
which is written to the serverside. For more details see help for ds.matrixDiag.

Author(s)

Paul Burton for DataSHIELD Development Team

40 matrixDS

matrixDimnamesDS matrixDimnamesDS assign function called by ds.matrixDimnames

Description

Adds dimnames (row names, column names or both) to a matrix on the serverside.

Usage

matrixDimnamesDS(M1.name = NULL, dimnames)

Arguments
M1.name Specifies the name of the serverside matrix to which dimnames are to be added.
Fully specified by <M 1> argument of function ds.matrixDimnames. For more
details see help for ds.matrixDimnames.
dimnames A dimnames attribute for the matrix: NULL or a list of length 2 giving the row
and column names respectively. Fully specified by <dimnames> argument of
function ds.matrixDimnames. For more details see help for ds.matrixDimnames.
Details

Adds dimnames (row names, column names or both) to a matrix on the serverside. Similar to the
dimnames function in native R. For more details see help for function ds.matrixDimnames

Value

Output is the serverside matrix specified by the <newobj> argument (or default name diag_<x1>)
with specified dimnames (row and column names) which is written to the serverside.

Author(s)
Paul Burton for DataSHIELD Development Team

matrixDS matrixDS assign function called by ds.matrix

Description

Creates a matrix A on the serverside

Usage

matrixDS(mdata.transmit, from, nrows.transmit, ncols.transmit, byrow,
dimnames)

matrixInvertDS 41

Arguments

mdata.transmit specifies the elements of the matrix to be created. Fully specified by <mdata>
argument of ds.matrix

from a character string specifying the source and nature of <mdata>. Fully specified
by <from> argument of ds.matrix

nrows.transmit specifies the number of rows in the matrix to be created. Fully specified by
<nrows.scalar> argument of ds.matrix

ncols.transmit specifies the number of columns in the matrix to be created. Fully specified by
<ncols.scalar> argument of ds.matrix

byrow a logical value specifying whether, when <mdata> is a vector, the matrix created
should be filled row by row or column by column. Fully specified by <byrow>
argument of ds.matrix

dimnames A dimnames attribute for the matrix: NULL or a list of length 2 giving the row
and column names respectively. An empty list is treated as NULL, and a list
of length one as row names only. Fully specified by <dimnames> argument of
ds.matrix

Details

Similar to the matrix() function in native R. Creates a matrix with dimensions specified by <nrows.scalar>
and <ncols.scalar> arguments and assigns the values of all its elements based on the <mdata> argu-
ment

Value

Output is the matrix A written to the serverside. For more details see help for ds.matrix

Author(s)
Paul Burton for DataSHIELD Development Team

matrixInvertDS matrixInvertDS serverside assign function called by ds.matrixInvert

Description

Inverts a square matrix A and writes the output to the serverside

Usage

matrixInvertDS(M1.name = NULL)

Arguments

M1.name A character string specifying the name of the matrix to be inverted

42 matrixMultDS

Details
Undertakes standard matrix inversion. This operation is only possible if the number of columns
and rows of A are the same and the matrix is non-singular - positive definite (eg there is no row or
column that is all zeros)

Value
Output is the matrix representing the inverse of A which is written to the serverside. For more
details see help for ds.matrixInvert

Author(s)
Paul Burton for DataSHIELD Development Team

matrixMultDS matrixMultDS serverside assign function called by ds.matrixMult

Description

Calculates the matrix product of two matrices and writes output to serverside

Usage
matrixMultDS(M1.name = NULL, M2.name = NULL)

Arguments
M1.name A character string specifying the name of the first matrix (M1) argument speci-
fied by the M1 argument in the original call to ds.matrixMult
M2.name A character string specifying the name of the second matrix (M2) argument
specified by the M1 argument in the original call to ds.matrixMult
Details

Undertakes standard matrix multiplication where with input matrices A and B with dimensions A:
mxn and B: nxp the output C has dimensions mxp and each elemnt C[i,j] has value equal to the dot
product of row i of A and column j of B where the dot product is obtained as sum(A[i,1]*B[1,j] +
Ali,2]*B[2,j] + + A[i,n]*B[n,j]). This calculation is only valid if the number of columns of A is
the same as the number of rows of B

Value
Output is the matrix representing the product of M1 and M2 which is written to the serverside. For
more details see help for ds.matrixMult

Author(s)
Paul Burton for DataSHIELD Development Team

matrix TransposeDS 43

matrixTransposeDS matrixTransposeDS serverside assign function called by
ds.matrixTranspose

Description

Transposes a matrix A and writes the output to the serverside

Usage

matrixTransposeDS(M1.name = NULL)

Arguments

M1.name A character string specifying the name of the matrix to be transposed

Details

Undertakes standard matrix transposition. This operation converts matrix A to matrix C where
element C[i,j] of matrix C equals element A[j,i] of matrix A. Matrix A therefore has the same
number of rows as matrix C has columns and vice versa.

Value
Output is the matrix representing the transpose of A which is written to the serverside. For more
details see help for ds.matrixTranspose

Author(s)
Paul Burton for DataSHIELD Development Team

meanDS Computes statistical mean of a vectores

Description

Calculates the mean value.

Usage

meanDS(xvect)

Arguments

xvect a vector

44 meanSdGpDS
Details

if the length of input vector is less than the set filter a missing value is returned.

Value

a numeric, the statistical mean

Author(s)

Gaye A, Burton PR

meanSdGpDS MeanSdGpDS

Description

Serverside function called by ds.meanSdGp

Usage

meanSdGpDS (X, INDEX)

Arguments
X a clientside supplied character string identifying the variable for which means/SDs
are to be calculated
INDEX a clientside supplied character string identifying the factor across which means/SDs
are to be calculated
Details

Computes the mean and standard deviation across groups defined by one factor

Author(s)

Burton PR

mergeDS 45

mergeDS mergeDS (assign function) called by ds.merge

Description

merges (links) two data.frames together based on common values in defined vectors in each data.frame

Usage

mergeDS(x.name, y.name, by.x.names.transmit, by.y.names.transmit, all.x,
all.y, sort, suffixes.transmit, no.dups, incomparables)

Arguments
X.name, the name of the first data.frame to be merged specified in inverted commas.
Specified via argument <x.name> of ds.merge function
y.name, the name of the second data.frame to be merged specified in inverted commas.

Specified via argument <y.name> of ds.merge function

by.x.names.transmit
the name of a single variable or a vector of names of multiple variables (in
transmittable form) containing the IDs or other data on which data.frame x is
to be merged/linked to data.frame y. Specified via argument <by.x.names> of
ds.merge function

by.y.names.transmit
the name of a single variable or a vector of names of multiple variables (in
transmittable form) containing the IDs or other data on which data.frame y is
to be merged/linked to data.frame x. Specified via argument <by.y.names> of
ds.merge function

all.x logical, if TRUE, then extra rows will be added to the output, one for each row
in x that has no matching row in y. Specified via argument <all.x> of ds.merge
function. Default = FALSE.

all.y logical, if TRUE, then extra rows will be added to the output, one for each row
in y that has no matching row in x. Specified via argument <all.y> of ds.merge
function. Default = FALSE.

sort logical, if TRUE the merged result should be sorted on elements in the by.x.names
and by.y.names columns. Specified via argument <sort> of ds.merge function.
Default = TRUE.

suffixes.transmit
a character vector of length 2 (in transmittable form) specifying the suffixes to
be used for making unique common column names in the two input data.frames
when they both appear in the merged data.frame. Specified via argument <suf-
fixes> of ds.merge function. Default ’.x” and ’.y’.

no.dups logical, when TRUE suffixes are appended in more cases to rigorously avoid
duplicated column names in the merged data.frame. Specified via argument
<no.dups> of ds.merge function. Default TRUE but was apparently implicitly
FALSE before R version 3.5.0.

46 messageDS

incomparables,
values intended for merging on one column which cannot be matched. See
’match’ in help for Native R merge function. Specified via argument <incompa-
rables> of ds.merge
Details

For further information see details of the native R function merge and the DataSHIELD clientside
function ds.merge.

Value

the merged data.frame specified by the <newobj> argument of ds.merge (or by default *x.name_y.name’
if the <newobj> argument is NULL) which is written to the serverside. In addition, two validity
messages are returned to the clientside indicating whether <newobj> has been created in each data
source and if so whether it is in a valid form. If its form is not valid in at least one study there
may be a studysideMessage that can explain the error in creating the full output object. As well as
appearing on the screen at run time,if you wish to see the relevant studysideMessages at a later date
you can use the ds.message function. If you type ds.message(<newobj>) it will print out the rele-
vant studysideMessage from any datasource in which there was an error in creating <newobj> and a
studysideMessage was saved. If there was no error and <newobj> was created without problems no
studysideMessage will have been saved and ds.message(<newobj>) will return the message: "ALL
OK: there are no studysideMessage(s) on this datasource".

Author(s)

Amadou Gaye, Paul Burton, for DataSHIELD Development Team

messageDS messageDS

Description

This function allows for error messages arising from the running of a server-side assign function to
be returned to the client-side

Usage

messageDS(message.object.name)

Arguments

message.object.name
is a character string, containing the name of the list containing the message. See
the header of the client-side function ds.message for more details.

namesDS 47

Details

Errors arising from aggregate server-side functions can be returned directly to the client-side. But
this is not possible for server-side assign functions because they are designed specifically to write
objects to the server-side and to return no meaningful information to the client-side. Otherwise,
users may be able to use assign functions to return disclosive output to the client-side. ds.message
calls messageDS which looks specifically for an object called $serversideMessage in a designated
list on the server-side. Server-side functions from which error messages are to be made available,
are designed to be able to write the designated error message to the $serversideMessage object into
the list that is saved on the server-side as the primary output of that function. So only valid server-
side functions of DataSHIELD can write a $studysideMessage, and as additional protection against
unexpected ways that someone may try to get round this limitation, a $studysideMessage is a string
that cannot exceed a length of nfilter.string a default of 80 characters.

Value
a list object from each study, containing whatever message has been written by DataSHIELD into
$studysideMessage.

Author(s)
Burton PR

namesDS Returns the names of a list

Description

Returns the names of the object in the list.

Usage

namesDS(x1list)

Arguments

xlist a list

Details

This is similar to R base function names but restricted to list types only.

Value

a character vector or NULL if the list does not have names

Author(s)
Gaye, A.

48 quantileMeanDS

numNaDS Counts the number of missing values

Description

this function just counts the number of missing entries in a vector.

Usage

numNaDS(xvect)

Arguments

xvect a vector

Value

an integer, the number of missing values

Author(s)
Gaye, A.
quantileMeanDS Generates quantiles and mean information without maximum and min-
imum
Description

the probabilities 5 are used to compute the corresponding quantiles.

Usage

quantileMeanDS(xvect)

Arguments

xvect a numerical vector

Value

a numeric vector that represents the sample quantiles

Author(s)
Burton, P.; Gaye, A.

rangeDS 49

rangeDS returns the minimum and maximum of a numeric vector

Description

this function is similar to R function range but instead to not return the real minimum and maxi-
mum, the computed values are multiplied by a very small random number.

Usage

rangeDS(xvect)

Arguments

xvect a numerical

Value

a numeric vector which contains the minimum and the maximum values of the vector

Author(s)

Amadou Gaye, Demetris Avraam for DataSHIELD Development Team

rbindDS rbindDS called by ds.rbind

Description

serverside assign function that takes a sequence of vector, matrix or data-frame arguments and
combines them by row to produce a matrix.

Usage

rbindDS(x.names.transmit = NULL, colnames.transmit = NULL)

Arguments

x.names. transmit
This is a vector of character strings representing the names of the elemental com-
ponents to be combined converted into a transmittable format. This argument is
fully specified by the <x> argument of ds.rbind

colnames.transmit
This is NULL or a vector of character strings representing forced column names
for the output object converted into a transmittable format. This argument is
fully specified by the <force.colnames> argument of ds.cbind.

50 rBinomDS

Details

A sequence of vector, matrix or data-frame arguments is combined row by row to produce a matrix
which is written to the serverside. For more details see help for ds.rbind and the native R function
rbind.

Value

the object specified by the <newobj> argument of ds.rbind(or default name <rbind.out>) which is
written to the serverside. As well as writing the output object as <newobj> on the serverside, two
validity messages are returned indicating whether <newobj> has been created in each data source
and if so whether it is in a valid form. If its form is not valid in at least one study - e.g. because
a disclosure trap was tripped and creation of the full output object was blocked - ds.cbind() also
returns any studysideMessages that can explain the error in creating the full output object. As
well as appearing on the screen at run time,if you wish to see the relevant studysideMessages at a
later date you can use the ds.message function. If you type ds.message("<newobj>") it will print
out the relevant studysideMessage from any datasource in which there was an error in creating
<newobj> and a studysideMessage was saved. If there was no error and <newobj> was created
without problems no studysideMessage will have been saved and ds.message("<newobj>") will
return the message: "ALL OK: there are no studysideMessage(s) on this datasource".

Author(s)
Paul Burton for DataSHIELD Development Team

rBinomDS rBinomDS serverside assign function

Description

primary serverside assign function called by ds.rBinom

Usage

rBinomDS(n, size = 1, prob = 0.5)

Arguments
n length of the pseudorandom number vector to be generated as specified by the
argument <samp.size> in the function ds.rBinom
size a scalar that must be a positive integer. Value set directly by <size> argument
of ds.rBinom - for details see help for ds.rBinom. May be a scalar or a vector
allowing the size to vary from observation to observation.
prob a numeric scalar in range 0 > prob > 1 which specifies the probability of a

positive response. Value set directly by <prob> argument of ds.rBinom - for
details see help for ds.rBinom May be a scalar or a vector allowing the size to
vary from observation to observation.

recodeLevelsDS 51

Details

Generates the vector of pseudorandom numbers from a binomial distribution in each data source
as specified by the arguments of ds.rBinom. This serverside function is effectively the same as the
function rbinom() in native R and its arguments are the same.

Value

Writes the pseudorandom number vector with the characteristics specified in the function call as
a new serverside vector on the data source on which it has been called. Also returns key infor-
mation to the clientside: the random seed as specified by you in each source + (if requested) the
full 626 length random seed vector this generated in each source (see info for the argument <re-
turn.full.seed.as.set>). It also returns a vector reporting the length of the pseudorandom vector
created in each source.

Author(s)

Paul Burton for DataSHIELD Development Team

recodeLevelsDS Recodes the levels of a categorical variables

Description

The functions uses the input factor and generates a new factor with new levels.

Usage

recodeLevelsDS(x = NULL, classes = NULL)

Arguments

X a factor vector

classes a character vector the levels of the newt factor vector
Value

a factor vector with the new levels

Author(s)
Gaye, A.

52 recode ValuesDS 1

recodeValuesDS1 recodeValuesDS1 an aggregate function called by ds.recodeValues

Description

First serverside function called by ds.recodeValues to convert specified values of elements in a
vector into a matched set of alternative specified values.

Usage

recodeValuesDS1(var.name.text = NULL, values2replace.text = NULL,
new.values.text = NULL)

Arguments

var.name.text a character string providing the name for the vector representing the variable to
be recoded. The <var.name.text> argument is generated and passed directly to
recodeValuesDS2 by ds.recodeValues

values2replace. text
a character string specifying the values in the vector specified by the argu-
ment <var.name.text> that are to be replaced by new values as specified in
the new.values.vector. The <values2replace.text> argument is generated and
passed directly to recodeValuesDS2 by ds.recodeValues. In effect, the <val-
ues2replace.vector> argument of the ds.recodeValues function is converted to a
character string format that is acceptable to the DataSHIELD parser in Opal and
so can be accepted by recodeValuesDS1

new.values. text
a character string specifying the new values to which the specified values in
the vector identified by the <var.name> argument are to be converted. The
<new.values.text> argument is generated and passed directly to recodeValuesDS2
by ds.recodeValues. In effect, the <new.values.vector> argument of the ds.recodeValues
function is converted to a character string format that is acceptable to the DataSHIELD
parser in Opal and so can be used in the call to recodeValuesDS1

Details

For all details see the help header for ds.recodeValues

Value

This first serverside function called by ds.recodeValues provides first level traps for a comprehensive
series of disclosure risks which can be returned directly to the clientside because recodeValuesDS|1
is an aggregate function. The second serverside function called by ds.dataFrameSubset (recodeVal-
uesDS2) carries out some of the same disclosure tests, but it is an assign function because it writes
the recoded vector to the serverside. In consequence, it records error messages as studysideMes-
sages which can only be retrieved using ds.message

recode ValuesDS2 53

Author(s)
DataSHIELD Development Team

recodeValuesDS2 recodeValuesDS2 an assign function called by ds.recodeValues

Description

Second serverside function called by ds.recodeValues to convert specified values of elements in a
vector into a matched set of alternative specified values.

Usage

recodeValuesDS2(var.name.text = NULL, values2replace.text = NULL,
new.values.text = NULL, numeric.output.format.possible,

n

force.output.format = "no"”, v2r.numeric = NULL)

Arguments

var.name.text a character string providing the name for the vector representing the variable to
be recoded. <var.name.text> argument generated and passed directly to recode-
ValuesDS2 by ds.recodeValues

values2replace. text
a character string specifying the values in the vector specified by the argu-
ment <var.name.text> that are to be replaced by new values as specified in
the new.values.vector. The <values2replace.text> argument is generated and
passed directly to recodeValuesDS2 by ds.recodeValues. In effect, the <val-
ues2replace.vector> argument of the ds.recodeValues function is converted to a
character string format that is acceptable to the DataSHIELD parser in Opal and
so can be accepted by recodeValuesDS?2

new.values. text
a character string specifying the new values to which the specified values in the
vector <var.name> are to be converted. The <new.values.text> argument is gen-
erated and passed directly to recodeValuesDS2 by ds.recodeValues. In effect,
the <new.values.vector> argument of the ds.recodeValues function is converted
to a character string format that is acceptable to the DataSHIELD parser in Opal
and so can be used in the call to recodeValuesDS2

numeric.output.format.possible
logical, if TRUE the nature of <var.name>, <values2replace.vector> and <new.values.vector>
are such that it is in principle possible for the output to be fully numeric. This ar-
gument is generated and passed directly to recodeValuesDS2 by ds.recodeValues
- its value determines how recodeValuesDS2 handles situations where a numeric
output may be desirable.

force.output.format
character string. This argument is generated and passed directly to recodeVal-
uesDS2 by ds.recodeValues. For details see the equivalent parameter in the help
header for ds.recodeValues

54 replaceNaDS

v2r.numeric logical. This argument is generated and passed directly to recodeValuesDS2
by ds.recodeValues. If TRUE it informs recodeValuesDS2 that the nature of
<var.name>, <values2replace.vector>, <new.values.vector> and <force.output.format>
are such that recodeValuesDS?2 should convert the recoded (output) vector to nu-
meric. If false, recodeValuesDS2 should write out the recoded (output) vector
as character.

Details

For all details see the help header for ds.recodeValues

Value

the object specified by the <newobj> argument (or default name ’<var.name>_recoded’) initially
specified in calling ds.recode Values. The output object (the required recoded variable called <newobj>
is written to the serverside. In addition, two validity messages are returned via ds.recodeValues in-
dicating whether <newobj> has been created in each data source and if so whether it is in a valid
form. If its form is not valid in at least one study - e.g. because a disclosure trap was tripped and
creation of the full output object was blocked - recodeValuesDS2 (via ds.recodeValues()) also re-
turns any studysideMessages that can explain the error in creating the full output object. As well as
appearing on the screen at run time,if you wish to see the relevant studysideMessages at a later date
you can use the ds.message function. If you type ds.message("newobj") it will print out the relevant
studysideMessage from any datasource in which there was an error in creating <newobj> and a
studysideMessage was saved. If there was no error and <newobj> was created without problems no
studysideMessage will have been saved and ds.message("newobj") will return the message: "ALL
OK: there are no studysideMessage(s) on this datasource".

Author(s)
DataSHIELD Development Team

replaceNaDS Replaces the missing values in a vector

Description
This function identifies missing values and replaces them by a value or values specified by the
analyst.

Usage

replaceNaDS(xvect, replacements)

Arguments

xvect a character, the name of the vector to process.

replacements a vector which contains the replacement value(s), a vector one or more values
for each study.

reShapeDS 55

Details

This function is used when the analyst prefer or requires complete vectors. It is then possible the
specify one value for each missing value by first returning the number of missing values using the
function numNaDS but in most cases it might be more sensible to replace all missing values by one
specific value e.g. replace all missing values in a vector by the mean or median value. Once the
missing values have been replaced a new vector is created.

Value

a new vector without missing values

Author(s)
Gaye, A.

reShapeD$S reShapeDS (assign function) called by ds.reShape

Description

Reshapes a data frame containing longitudinal or otherwise grouped data from ’wide’ to ’long’
format or vice-versa

Usage

reShapeDS(data.name, varying.transmit, v.names.transmit, timevar.name,
idvar.name, drop.transmit, direction, sep)

Arguments

data.name, the name of the data.frame to be reshaped. Specified via argument <data.name>
of ds.reShape function

varying.transmit,
names of sets of variables in the wide format that correspond to single variables
in long format (typically what may be called "time-varying’ or ’time-dependent’
variables). Specified via argument <varying> of ds.reShape function.

v.names.transmit,
the names of variables in the long format that correspond to multiple variables
in the wide format - for example, sbp7, sbpl1, sbpl5 (measured systolic blood
pressure at ages 7, 11 and 15 years). Specified via argument <v.names> of
ds.reShape function

timevar.name, the variable in long format that differentiates multiple records from the same
group or individual. Specified via argument <timevar.name> of ds.reShape func-
tion

idvar.name, names of one or more variables in long format that identify multiple records
from the same group/individual. This/these variable(s) may also be present in
wide format. Specified via argument <idvar.name> of ds.reShape function

56 rmDS

drop.transmit,
a vector of names of variables to drop before reshaping. Specified via argument
<drop> of ds.reShape function

direction, a character string, partially matched to either "wide" to reshape from long to
wide format, or "long" to reshape from wide to long format. Specified via argu-
ment <direction> of ds.reShape function

sep, a character vector of length 1, indicating a separating character in the variable
names in the wide format. Specified via argument <sep> of ds.reShape function

Details

This function is based on the native R function reshape. It reshapes a data frame containing longi-
tudinal or otherwise grouped data between *wide’ format with repeated measurements in separate
columns of the same record and ’long’ format with the repeated measurements in separate records.
The reshaping can be in either direction

Value

a reshaped data.frame converted from long to wide format or from wide to long format which is
written to the serverside and given the name provided as the <newobj> argument of ds.reShape or
’newObject’ if no name is specified. In addition, two validity messages are returned to the clientside
indicating whether <newobj> has been created in each data source and if so whether it is in a valid
form (see header for ds.reShape.

Author(s)

Demetris Avraam, Paul Burton for DataSHIELD Development Team

rmDS rmDS an aggregate function called by ds.rm

Description

deletes an R object on the serverside

Usage

rmDS(x.name. transmit)

Arguments

X.name.transmit,
the name of the object to be deleted converted into transmissable form. The
argument is specified via the <x.name> argument of ds.rm

rNormDS 57

Details

this is a serverside function based on the rm() function in native R. It is an aggregate function which
may be surprising because it modifies an object on the serverside, and would therefore be expected
to be an assign function. However, as an assign function the last step in running it would be to write
the modified object as newobj. But this would fail because the effect of the function is to delete the
object and so it would be impossible to write it anywhere.

Value

the specified object is deleted from the serverside. If this is successful the message "Object <x.name>
successfully deleted" is returned to the clientside (where x.name is the name of the object to be
deleted). If the object to be deleted is already absent on a given source, that source will return the
message: "Object to be deleted, i.e. <x.name> , does not exist so does not need deleting". Finally,
if the specified name of the object to be deleted is too long (>nfilter.stringShort) there is a potential
disclosure risk (active code hidden in the name) and the rmDS returns a message such as: "Disclo-
sure risk, number of characters in x.name must not exceed nfilter.stringShort which is currently set
at: 25" where ’25’ is the current setting of the R_Option value of nfilter.stringShort.

Author(s)

Paul Burton for DataSHIELD Development Team

rNormDS rNormDS serverside assign function

Description

primary serverside assign function called by ds.rNorm

Usage

rNormDS(n, mean = @, sd = 1, force.output.to.k.decimal.places = 9)

Arguments
n length of the pseudorandom number vector to be generated as specified by the
argument <samp.size> in the function ds.rNorm
mean this specifies the mean of the pseudorandom number vector to be generated as
specified by the argument <mean> in the function ds.rNorm. May be a scalar or
a vector allowing the mean to vary from observation to observation.
sd this specifies the standard deviation of the pseudorandom number vector to be

generated as specified by the argument <sd> in the function ds.rNorm May be a
scalar or a vector allowing the sd to vary from observation to observation.

58 rowColCalcDS

force.output.to.k.decimal.places
scalar integer. Forces the output random number vector to have k decimal places.
If O rounds it coerces decimal random number output to integer, a k in range
1-8 forces output to have k decimal places. If k = 9, no rounding occurs of
native output. Default=9. Value specified by <force.output.to.k.decimal.places>
argument in ds.rNorm

Details

Generates the vector of pseudorandom numbers from a normal distribution in each data source as
specified by the arguments of ds.rNorm. This serverside function is effectively the same as the
function rnorm() in native R and its arguments are the same.

Value

Writes the pseudorandom number vector with the characteristics specified in the function call as
a new serverside vector on the data source on which it has been called. Also returns key infor-
mation to the clientside: the random seed as specified by you in each source + (if requested) the
full 626 length random seed vector this generated in each source (see info for the argument <re-
turn.full.seed.as.set>). It also returns a vector reporting the length of the pseudorandom vector
created in each source.

Author(s)
Paul Burton for DataSHIELD Development Team

rowColCalcDS Computes sums and means of rows or columns of numeric arrays

Description

The function is similar to R base functions 'rowSums’, ’colSums’, ‘rowMeans’ and ’colMeans’.

Usage

rowColCalcDS(dataset, operation)

Arguments
dataset an array of two or more dimensions.
operation an integer that indicates the operation to carry out: 1 for 'rowSums’, 2 for ’col-
Sums’, 3 for ‘rowMeans’ or 4 for ’colMeans’
Details

the output is returned to the user only the number of entries in the output vector is greater or equal
to the allowed size.

rPoisDS 59

Value

a numeric vector

Author(s)
Gaye, A.

rPoisDS rPoisDS serverside assign function

Description

primary serverside assign function called by ds.rPois

Usage

rPoisDS(n, lambda = 1)

Arguments
n length of the pseudorandom number vector to be generated as specified by the
argument <samp.size> in the function ds.rPois
lambda a numeric scalar specifying the expected count of the Poisson distribution used
to generate the random counts. Specified directly by the lambda argument in
ds.rPois. May be a scalar or a vector allowing lambda to vary from observation
to observation.
Details

Generates the vector of pseudorandom numbers (non-negative integers) from a Poisson distribution
in each data source as specified by the arguments of ds.rPois. This serverside function is effectively
the same as the function rpois() in native R and its arguments are the same.

Value

Writes the pseudorandom number vector with the characteristics specified in the function call as
a new serverside vector on the data source on which it has been called. Also returns key infor-
mation to the clientside: the random seed as specified by you in each source + (if requested) the
full 626 length random seed vector this generated in each source (see info for the argument <re-
turn.full.seed.as.set>). It also returns a vector reporting the length of the pseudorandom vector
created in each source.

Author(s)
Paul Burton for DataSHIELD Development Team

60

rUnifDS

runifDS

rUnifDS serverside assign function

Description

primary serverside assign function called by ds.rUnif

Usage
runifDS(n, min

Arguments

n

min

max

= 0, max = 1, force.output.to.k.decimal.places = 9)

length of the pseudorandom number vector to be generated as specified by the
argument <samp.size> in the function ds.rUnif

a numeric scalar specifying the minimum of the range across which the random
numbers will be generated in each source. Specified directly by the min argu-
ment in ds.rUnif. May be a scalar or a vector allowing the min to vary from
observation to observation.

a numeric scalar specifying the maximum of the range across which the random
numbers will be generated in each source. Specified directly by the max argu-
ment in ds.rUnif. May be a scalar or a vector allowing the min to vary from
observation to observation.

force.output.to.k.decimal.places

Details

scalar integer. Forces the output random number vector to have k decimal places.
If O rounds it coerces decimal random number output to integer, a k in range
1-8 forces output to have k decimal places. If k = 9, no rounding occurs of
native output. Default=9. Value specified by <force.output.to.k.decimal.places>
argument in ds.rUnif

Generates the vector of pseudorandom numbers from a uniform distribution in each data source
as specified by the arguments of ds.rUnif. This serverside function is effectively the same as the
function runif() in native R and its arguments are the same.

Value

Writes the pseudorandom number vector with the characteristics specified in the function call as
a new serverside vector on the data source on which it has been called. Also returns key infor-
mation to the clientside: the random seed as specified by you in each source + (if requested) the
full 626 length random seed vector this generated in each source (see info for the argument <re-
turn.full.seed.as.set>). It also returns a vector reporting the length of the pseudorandom vector
created in each source.

Author(s)

Paul Burton for DataSHIELD Development Team

scatterPlotDS 61

scatterPlotDS Calculates the coordinates of the data to be plot

Description
This function uses two disclosure control methods to generate non-disclosive coordinates that are
returned to the client that generates the non-disclosive scatter plots.

Usage

scatterPlotDS(x, y, method.indicator, k, noise)

Arguments
X the name of a numeric vector, the x-variable.
y the name of a numeric vector, the y-variable.

method. indicator
an intiger either 1 or 2. If the user selects the deterministic method in the client
side function the method.inticator is set to 1 while if the user selects the proba-
bilistic method this argument is set to 2.

k the number of the nearest neghbours for which their centroid is calculated if the
deterministic method is selected.

noise the percentage of the initial variance that is used as the variance of the embedded
noise if the probabilistic method is selected.

Details

If the user chooses the deteministic approach, the function finds the k-1 nearest neighbours of each
data point in a 2-dimensional space. The nearest neighbours are the data points with the minimum
Euclidean distances from the point of interest. Each point of interest and its k-1 nearest neighbours
are then used for the calculation of the coordinates of the centroid of those k points. Centroid
here is referred to the centre of mass, i.e. the x-coordinate of the centroid is the average value of the
x-coordinates of the k nearest neighbours and the y-coordinate of the centroid is the average of the y-
coordinates of the k nearest neighbours. If the user chooses the probabilistic approach, the function
adds random noise to x and y separately. Each random noise follows a normal distribution with
zero mean and variance equal to 10 disclosure we fix the random number generator in a value that
is specified by the input variables. Thus the function returns always the same noisy data for a given
pair of variables.

Value

a list with the x and y coordinates of the data to be plot

Author(s)

Demetris Avraam for DataSHIELD Development Team

62 score VectDS

scoreVectDS Generates the score vector and information matrix

Description

This function is called by the client function ’ds.gee’ to produced the score vector and information
matrix.

Usage

scoreVectDS(data, formula, family, clusterID, corstr, alpha, phi,
startBetas, zcor = NULL)

Arguments

data the input dataframe which contains the variable specified in the formula.

formula a regression formula.

family the link function for the regression.

clusterID the name of the column that holds the cluster IDs.

corstr the correlation structure.

alpha the parameter alpha

phi the parameter alpha

startBetas a character, the starting values concatenated by comma

zcor the user defined matrix user if the correlation structure is *fixed’.
Details

the score vector and information matrix are calculated according to the correlation structure.

Value

a list

Author(s)

Gaye, A.; Jones EM.

seqDS

63

seqDS

seqDS called by ds.seq

Description

assign function seqDS called by ds.seq

Usage

seqDS(FROM.value.char, BY.value.char, LENGTH.OUT.value.char,
ALONG.WITH.name)

Arguments
FROM.value.char

BY.value.char

the starting value for the sequence expressed as an integer in character form.
e.g. FROM.value.char="1" will start at 1, FROM.value.char="-10" will start at
-10. Default = "1". The value of this argument is usually specified by the value
provided to the argument <FROM.value.char> in the function ds.seq

the value to increment each step in the sequence expressed as a numeric e.g.
BY.value.char="10" will increment by 10, while BY.value.char="-3.37" will re-
duce the value of each sequence element by -3.37. Default = "1" but does not
have to be integer. The value of this argument is usually specified by the value
provided to the argument <BY.value.char> in the function ds.seq

LENGTH.OUT.value.char

ALONG.WITH.name

Details

The length of the sequence at which point its extension should be stopped. e.g.
LENGTH.OUT.value.char="1000" will generate a sequence of length 1000. De-
fault = NULL (must be specified) but must be a positive integer. The value
of this argument is usually specified by the value provided to the argument
<LENGTH.OUT.value.char> in the function ds.seq

For convenience, rather than specifying a value for LENGTH.OUT it can often
be better to specify a variable name as the <ALONG.WITH.name> argument.
e.g. ALONG.WITH.name = "vector.name". This can be particularly useful in
DataSHIELD where the length of the sequence you need to generate in each
data set depends on the standard length of vectors in that data set and this will
in general vary. The value of this argument is usually specified by the value
provided to the argument <KALONG.WITH.name> in the function ds.seq

An assign function that uses the native R function seq() to create any one of a flexible range of
sequence vectors that can then be used to help manage and analyse data. As it is an assign function
the resultant vector is written as a new object onto all of the specified data source servers. For
the purposes of creating the DataSHIELD equivalent to seq() in native R we have used all of the
original arguments (see below) except the <to> argument. This simplifies the function and prevents
some combinations of arguments that lead to an error in native R. The effect of the <to> argument

64

setSeedDS

- see help(seq) in native R - is to specify the terminal value of the sequence. However, when using
seq() one can usually specify other arguments (see below) to mimic the desire effect of <to>. These
include: <from>, the starting value of the sequence; <by>, its increment (+ or -), and <length.out>
the length of the final vector in each data source.

Value

the object specified by the <newobj> argument of function ds.seq (or default name newObj) which
is written to the serverside. As well as writing the output object as <newobj> on the serverside,
two validity messages are returned indicating whether <newobj> has been created in each data
source and if so whether it is in a valid form. If its form is not valid in at least one study - e.g.
because a disclosure trap was tripped and creation of the full output object was blocked - ds.seq()
also returns any studysideMessages that can explain the error in creating the full output object.
As well as appearing on the screen at run time,if you wish to see the relevant studysideMessages
at a later date you can use the ds.message function. If you type ds.message("<newobj>") it will
print out the relevant studysideMessage from any datasource in which there was an error in creating
<newobj> and a studysideMessage was saved. If there was no error and <newobj> was created
without problems no studysideMessage will have been saved and ds.message("<newobj>") will
return the message: "ALL OK: there are no studysideMessage(s) on this datasource".

Author(s)

Paul Burton for DataSHIELD Development Team

setSeedDS setSeedDs called by ds.setSeed, ds.rNorm, ds.rUnif, ds.rPois and

ds.rBinom

Description

An aggregate serverside function that primes the pseudorandom number generator in a data source

Usage

setSeedDS(seedtext = NULL, kind = NULL, normal.kind = NULL)

Arguments
seedtext this is simply the value of the <seed.as.integer> argument of ds.setSeed, ds.rNorm,
ds.rUnif, ds.rPois of ds.rBinom coerced into character format. This is done by
the clientside functions themselves and does not require the DataSHIELD user
to do anything. Please see the help for these clientside functions, and in partic-
ular, the information for the argument <seed.as.integer> for more details.
kind see help for set.seed() function in native R

normal .kind see help for set.seed() function in native R

subsetByClassDS 65

Details

setSeedDS is effectively equivalent to the native R function set.seed() and so the help for that func-
tion can provide many additional details. The only very minor difference is that the first argument
of setSeedDS, <seedtext> takes the integer priming seed in character format. However, for the user
that integer is still specified directly as an integer as the <seed.as.integer> argument of one of the
clientside functions ds.setSeed, ds.rNorm Each of these clientside functions coerces the inte-
ger to character format calls setSeedDS and the first active line of code in setSeedDS converts the
character string back to an integer and treats it as the first argument <seed> of the native R function
set.seed(). The two other arguments of set.seed() in native R, <kind> and <normal . kind> are both
defaulted by specifying them as NULL. This defaulting is hard wired into the setSeedDS function
and as this cannot be changed by the analyst it means that setSeedDS is much less flexible than
native R’s set.seed() function. If any DataSHIELD user requires some aspect of this flexibility re-
turned the development team can be approached, but unless you are actually doing theoretical work
with random number generators it is likely that the

Value

Sets the values of the vector of integers of length 626 known as .Random.seed on each data source
that is the true current state of the random seed in each source.

Author(s)
Paul Burton for DataSHIELD Development Team

subsetByClassDS Breaks down a dataframe or a factor into its sub-classes

Description

The function takes a categorical vector or dataframe as input and generates subset(s) vectors or
dataframes for each category. Subsets are considered invalid if they hold between 1 and 4 observa-
tions.

Usage
subsetByClassDS(data = NULL, variables = NULL)

Arguments
data a string character, the name of the dataframe or the factor vector
variables a vector of string characters, the names of the the variables to subset on.
Details

If the input data object is a dataframe it is possible to specify the variables to subset on. If a subset is
not ’valid’ all its the values are reported as missing (i.e. NA), the name of the subsets is labelled as
’_INVALID’. If no variables are specified to subset on, the dataframe will be subset on each of its
factor variables. And if none of the columns holds a factor variable a message is issued as output.
A message is also issued as output if the input vector is not of type factor.

66 subsetDS

Value

a list which contains the subsetted datasets

Author(s)

Gaye, A.

subsetDS Generates a valid subset of a table or a vector

Description

The function uses the R classical subsetting with squared brackets ’[]” and allows also to subset
using a logical oprator and a threshold. The object to subset from must be a vector (factor, numeric
or charcater) or a table (data.frame or matrix).

Usage

subsetDS(dt = NULL, complt = NULL, rs = NULL, cs = NULL,
lg = NULL, th = NULL, varname = NULL)

Arguments

dt a string character, the name of the dataframe or the factor vector and the range
of the subset.

complt a boolean that tells if the subset to subset should include only complete cases

rs a vector of two integers that give the range of rows de extract.

cs a vector of two integers or one or more characters; the indices of the columns to
extract or the names of the columns (i.e. names of the variables to extract).

lg a character, the logical parameter to use if the user wishes to subset a vector
using a logical operator. This parameter is ignored if the input data is not a
vector.

th a numeric, the threshold to use in conjunction with the logical parameter. This
parameter is ignored if the input data is not a vector.

varname a character, if the input data is a table, if this parameter is provided along with the

’logical’ and ’threshold’ parameters, a subtable is based the threshold applied
to the speicified variable. This parameter is however ignored if the parameter
’rows’ and/or ’cols’ are provided.

table1DDS 67

Details

If the input data is a table: The user specifies the rows and/or columns to include in the subset if the
input object is a table; the columns can be refered to by their names. The name of a vector (i.e. a
variable) can also be provided with a logical operator and a threshold (see example 3). If the input
data is a vector: when the parameters ‘rows’, ’logical’ and ’threshold’ are all provided the last two
are ignored ('rows’ has precedence over the other two parameters then). If the requested subset is
not valid (i.e. contains less than the allowed number of observations), the subset is not generated,
rather a table or a vector of missing values is generated to allow for any subsequent process using
the output of the function to proceed after informing the user via a message.

Value

a subset of the vector, matric or dataframe as specified is stored on the server side

Author(s)
Gaye, A.

table1DDS Creates 1-dimensional contingency tables

Description

This function generates a 1-dimensional table where potentially disclosive cells. (based on the set
threshold) are replaced by a missing value CINA’).

Usage

table1DDS(xvect)
Arguments

xvect a numerical vector with discrete values - usually a factor.
Details

It generates a 1-dimensional tables where valid (non-disclosive) 1-dimensional tables are defined as
data from sources where no table cells have counts between 1 and the set threshold. When the ouput
table is invalid all cells but the total count are replaced by missing values. Only the total count is
visible on the table returned to the client site. A message is also returned with the 1-dimensional;
the message says "invalid table - invalid counts present" if the table is invalid and ’valid table’
otherwise.

Value

a list which contains two elements: ’table’, the 1-dimensional table and *message’ a message which
informs about the validity of the table.

68 table2DDS

Author(s)

Gaye A.

table2DDS table2DDS (aggregate function) called by ds.table2D

Description
This function generates a 2-dimensional contingency table where potentially disclosive cells (based
on a set threshold) are replaced by a missing value NA’).

Usage

table2DDS(xvect, yvect)

Arguments
xvect a numerical vector with discrete values - usually a factor.
yvect a numerical vector with discrete values - usually a factor.
Details

It generates 2-dimensional contingency tables where valid (non-disclosive) tables are defined as
those where none of their cells have counts between 1 and the set threshold "nfilter.tab". When
the ouput table is invalid all cells except the total counts are replaced by missing values. Only the
total counts are visible on the table returned to the client side. A message is also returned with the
2-dimensional table; the message says "invalid table - invalid counts present" if the table is invalid
and ’valid table’ otherwise.

Value
a list which contains two elements: ’table’, the 2-dimensional table and *'message’ a message which
informs about the validity of the table.

Author(s)

Amadou Gaye, Paul Burton, Demetris Avraam for DataSHIELD Development Team

tapplyDS 69

tapplyDS tapplyDS called by ds.tapply

Description

Apply one of a selected range of functions to summarize an outcome variable over one or more
indexing factors and write the resultant summary to the clientside

Usage
tapplyDS(X.name, INDEX.names.transmit, FUN.name)

Arguments

X.name, the name of the variable to be summarized. Specified via argument <X.name>
of ds.tapply function

INDEX.names. transmit,
the name of a single factor or a vector of names of factors to index the variable to
be summarized. Specified via argument <INDEX.names> of ds.tapply function

FUN.name, the name of one of the allowable summarizing functions to be applied. Specified
via argument <FUN.name> of ds.tapply function.

Details

see details for ds.tapply function

Value

an array of the summarized values created by the tapplyDS function. This array is returned to the
clientside. It has the same number of dimensions as INDEX.

Author(s)

Paul Burton, Demetris Avraam for DataSHIELD Development Team

tapplyDS.assign tapplyDS.assign called by ds.tapply.assign

Description
Apply one of a selected range of functions to summarize an outcome variable over one or more
indexing factors and write the resultant summary as a newobj on the serverside

Usage

tapplyDS.assign(X.name, INDEX.names.transmit, FUN.name)

70 testObjExistsDS

Arguments

X.name, the name of the variable to be summarized. Specified via argument <X.name>
of ds.tapply.assign function

INDEX.names. transmit,
the name of a single factor or a vector of names of factors to index the variable
to be summarized. Specified via argument <INDEX.names> of ds.tapply.assign
function

FUN.name, the name of one of the allowable summarizing functions to be applied. Specified
via argument <FUN.name> of ds.tapply.assign function.

Details

see details for ds.tapply.assign function

Value

an array of the summarized values created by the tapplyDS.assign function. This array is written as
a newobj on the serverside. It has the same number of dimensions as INDEX.

Author(s)

Paul Burton, Demetris Avraam for DataSHIELD Development Team

testObjExistsDS testObjExistsDS

Description

The serverside function called by ds.testObjExists

Usage
testObjExistsDS(test.obj.name = NULL)

Arguments
test.obj.name a clientside provided character string specifying the variable whose presence is
to be tested in each data source
Details
Tests whether a given object exists in all sources. It is called at the end of all recently written assign
functions to check the new (assigned) object has been created in all sources
Author(s)
Burton PR

unListDS 71

unListDS unListDS a serverside aggregate function called by ds.unList

Description

Coerces an R object back from a list towards the class it was before being coerced to a list

Usage

unListDS(x.name, recursive, newobj)

Arguments
X.name the name of the input object to be coerced back from class list. It must be
specified in inverted commas. But this argument is usually specified directly by
<x.name> argument of the clientside function ds.unList
recursive argument required for native R unlist function - see native R help for unlist
function
newobj is the object hard assigned ’«-’ to be the output of the function written to the
serverside
Details

Unlike most other class coercing functions this is an aggregate function rather than an assign func-
tion. This is because the datashield.assign function in opal deals specially with a created object
(newobj) if it is of class list. Reconfiguring the function as an aggregate function works around
this problem. This aggregate function is based on the native R function unlist and so additional
information can be found in the help for unlist. When an object is coerced to a list, depending on
the class of the original object some information may be lost. Thus, for example, when a data.frame
is coerced to a list information that underpins the structure of the data.frame is lost and when it is
subject to the function ds.unlist it is returned to a simpler class than data.frame eg 'numeric’ (basi-
cally a numeric vector containing all of the original data in all variables in the data.frame but with
no structure). If you wish to reconstruct the original data.frame you therefore need to specify this
structure again e.g. the column names etc

Value

the object specified by the <newobj> argument (or its default name <x.name>.mat) which is written
to the serverside. In addition, two validity messages are returned. The first confirms an output
object has been created, the second states its class.

Author(s)

Amadou Gaye, Paul Burton for DataSHIELD Development Team

72 varDS

varDS Computes the variance of vector

Description

Calculates the variance.

Usage

varDS(xvect)

Arguments

xvect a vector

Details

if the length of input vector is less than the set filter a missing value is returned.

Value

a list, with the sum of the input variable, the sum of squares of the input variable, the number of
missing values, the number of valid values, the number of total lenght of the variable, and a study
message indicating whether the number of valid is less than the disclosure threshold

Author(s)

Amadou Gaye, Demetris Avraam, for DataSHIELD Development Team

Index

alphaPhiDs, 5
asCharacterDS, 6
asDataMatrixDS, 7
asFactorDS1, 8
asFactorDS2, 8
asIntegerDS, 9
asListDS, 10
aslLogicalDs, 11
asMatrixDS, 11
asNumericDS, 12

BooleDS, 13

cbindDS, 14

cDS, 15
changeRefGroupDS, 15
checkNegValueDS, 16
corDS, 17

covDS, 17

dataFrameDS, 18
dataFrameFillDS, 20
dataFrameSortDS, 20
dataFrameSubsetDS1, 21
dataFrameSubsetDS2, 23
densityGridDS, 24
dimDS, 25

glmDS1, 26
glmDS2, 27
g1lmSLMADST, 28
g1lmSLMADS2, 29

heatmapPlotDS, 30
histogramDS1, 31
histogramDS2, 32

isNaDS, 33
isValidDS, 33

lengthDS, 34

73

lexisDS1, 34
lexisDS2, 35
lexisDS3, 36

listDisclosureSettingsDS, 36

listDs, 37

matrixDetDS1, 37
matrixDetDS2, 38
matrixDiagDS, 39
matrixDimnamesDS, 40
matrixDS, 40
matrixInvertDS, 41
matrixMultDS, 42
matrixTransposeDS, 43
meanDS, 43
meanSdGpDS, 44
mergeDS, 45
messageDS, 46

namesDS, 47
numNaDS, 48

quantileMeanDS, 48

rangeDS, 49
rbindDS, 49
rBinomDS, 50
recodelLevelsDS, 51
recodeValuesDS1, 52
recodeValuesDS2, 53
replaceNaDsS, 54
reShapeDS, 55

rmDS, 56

rNormDS, 57
rowColCalcDS, 58
rPoisDS, 59
runifDS, 60

scatterPlotDS, 61
scoreVectDS, 62
seqDs, 63

74

setSeedDS, 64
subsetByClassDS, 65
subsetDS, 66

table1DDS, 67
table2DDS, 68
tapplyDS, 69
tapplyDS.assign, 69
testObjExistsDS, 70

unListDS, 71

varDsS, 72

INDEX

	alphaPhiDS
	asCharacterDS
	asDataMatrixDS
	asFactorDS1
	asFactorDS2
	asIntegerDS
	asListDS
	asLogicalDS
	asMatrixDS
	asNumericDS
	BooleDS
	cbindDS
	cDS
	changeRefGroupDS
	checkNegValueDS
	corDS
	covDS
	dataFrameDS
	dataFrameFillDS
	dataFrameSortDS
	dataFrameSubsetDS1
	dataFrameSubsetDS2
	densityGridDS
	dimDS
	glmDS1
	glmDS2
	glmSLMADS1
	glmSLMADS2
	heatmapPlotDS
	histogramDS1
	histogramDS2
	isNaDS
	isValidDS
	lengthDS
	lexisDS1
	lexisDS2
	lexisDS3
	listDisclosureSettingsDS
	listDS
	matrixDetDS1
	matrixDetDS2
	matrixDiagDS
	matrixDimnamesDS
	matrixDS
	matrixInvertDS
	matrixMultDS
	matrixTransposeDS
	meanDS
	meanSdGpDS
	mergeDS
	messageDS
	namesDS
	numNaDS
	quantileMeanDS
	rangeDS
	rbindDS
	rBinomDS
	recodeLevelsDS
	recodeValuesDS1
	recodeValuesDS2
	replaceNaDS
	reShapeDS
	rmDS
	rNormDS
	rowColCalcDS
	rPoisDS
	rUnifDS
	scatterPlotDS
	scoreVectDS
	seqDS
	setSeedDS
	subsetByClassDS
	subsetDS
	table1DDS
	table2DDS
	tapplyDS
	tapplyDS.assign
	testObjExistsDS
	unListDS
	varDS
	Index

