
managing_development_github_basics_v0.2.odt -- andrew.turner@bristol.ac.uk

Managing Development
Git and GitHub Basics

1. What is Git?

Git is software for managing different versions of code,
and managing contributions from multiple developers.

Code is stored in a 'git repository'. When you make a
change to some code, you write a short description of
what the change is, and 'commit' this to the repository. Git
records changes that have been made and the history of
these commits.

2. What is GitHub?

GitHub is a website which hosts git repositories.

3. Datashield on GitHub

All datashield code is available at
https:// g it h ub.com/datashield

The code is split into a series of different repositories.
There is a separate repository for each datashield R
package.

4. Git Structure and Concepts

4.1 Repositories and branches

DataSHIELD exists as a series of R packages. Some
installed on the computer of the researcher wanting to do
analysis – these are the client packages; organised into
the following repositories:
* opal
* dsBaseClient
* dsStatsClient
* dsGraphicsClient
* dsModellingClient

Some installed on each of the computers that holds the
data to be analysed – these are the server packages;
organised into the following repositories:
* dsBase
* dsStats
* dsGraphics
* dsModelling

One of git's selling points is that it makes non-linear
development easier, so multiple people can work on
different things and their edits can be merged together
relatively painlessly. To accomplish this, git it built to make
'branching' very easy.

Each repository has a 'master' branch. This is the official,
tested and production version of the code.

Each repository can have any number of other branches.
These are copies of the master branch (or a copy of any

other branch) from a given point. The purpose of the
branches is to hold work in progress. Once a piece of work
in progress has been finalised and tested, it can easily be
merged into the master.

To be clear: each repository has its own branch structure.
So each of the 9 repositories above has its own 'master'
branch that is unique to it and independent of any other
repository.

4.2 Local and remote

Each repository exists remotely and publicly on GitHub
(Git calls github the repository 'origin').

When you get hold of a copy of the code to edit, you'll be
getting the entire history of the repository including all of
the branches that are on GitHub. You will have a local
copy of everything.

Nothing you do locally will appear on GitHub unless you
put it back there.

You can choose what goes to GitHub on a per branch
basis – so there can be public branches, which exist on
GitHub and in your local copy; and there can be private
branches which only exist locally to you.

Your local copy of a branch (or multiple branches) might
be 'ahead' of the copy on GitHub; because you've made
some changes, but haven't put them back on GitHub. Or,
your local copy of a branch or branches might be 'behind'
the copy on GitHub; because someone else has made
changes and put them on GitHub at sometime since you
made your local copy. Or indeed, it could be both (which is
when git can really help avoid problems).

5. Installing Git

5.1 Windows

There is a desktop application for Windows that integrates
Git and GitHub together – 'GitHub for Windows'.

(1) Go to https://windows.github.com/ and download
Github for Windows

(2) Run the installer
The installer might need to install some pre-requisites and
reboot before finally being able to install github for
windows.

(3) Sign in to the github client
Allow the github client to set your git configuration (name
and email)

5.2 Linux

On Linux we only need to install Git itself. Use your
package manager to install git. e.g.

$ sudo apt-get install git

1

https://github.com/datashield
https://github.com/datashield
https://github.com/datashield
https://github.com/datashield
https://github.com/datashield

managing_development_github_basics_v0.2.odt -- andrew.turner@bristol.ac.uk

Then tell git who you are:

$ git config --global user.name <insert name>
$ git config --global user.email <insert email
address>

6. Using Git

The two ways to use git covered here are:
(1) through the GitHub for Windows application,
(2) through the command line.

(1) is Windows specific, (2) applies to both Windows and
Linux.

6.1 Cloning a repository

'Cloning' refers to the process of getting a copy of a
repository. You only need to do this once.

GitHub for Windows
In the GitHub for Windows desktop application there is an
option to clone repositories. As a member of the
DataSHIELD organisation, you will be able to see a list of
the DataSHIELD repos once you've signed in.

By default, cloning will create a folder with the same name
as the repository you're cloning. So if you clone dsBase in
the Documents folders, it will create a new folder
Documents/dsBase which contains the code. By default
GitHub for Windows clones into Documents/GitHub/<repo
name>.

Command line / Git shell
Navigate to the folder you want to clone the repo into, for
example:

$ cd Documents/GitHub

You need to know the web address of the repository you
want to clone. However, they follow a consistent pattern of
“<github url>/<username>/<repo name>.git”, for example:

$ git clone
https://github.com/datashield/dsBase.git

6.2 Pull a repository

Pulling refers to the process of updating your local copy of
a repository. It is best to do this prior to making your own
changes to make sure you are not a long way behind with
any new changes.

GitHub for Windows
In the Windows desktop application, pulling is achieved by
pressing the 'sync' button.

Command line / Git shell
Using the command line gives you a little more flexibility.
Most simply, you can run:

$ git pull origin

Which will fetch and merge any updates to all of the

branches that exist on GitHub (GitHub is the remote
repository you are pulling from, which git calls the 'origin').

If you think that there are changes on your local version
that are not on GitHub then you may want to use:

$ git pull --rebase origin

This will update your local version by putting your changes
on top of any new changes from GitHub (as if the new
changes from GitHub had happened first).

In practice it is better to first 'pull' to get up to date, and
then make your changes. The --rebase option is useful
when you forget to pull first.

You don't have to pull everything from GitHub, instead you
can pull on a per branch basis. (And you can also use
--rebase with this, too.) In which case use:

$ git pull origin <branchname>

Be careful – you will get into a mess if you pull a branch
that is different from the branch you are currently working
on.

6.3 Switching, creating and deleting branches

Remember, everything you do locally remains local unless
you explicitly put it back on GitHub. You don't need to
worry too much about accidentally deleting branches, or
accidentally putting branches that you don't want to make
public onto GitHub.

Switching branches
When you switch branches Git actually changes the
contents of the repository folder. The contents of the folder
always reflects whichever branch you are on.

So, if the 'add_more_files' branch contains 5 text files, but
'master' only contains 1 text file, then you can watch the
four new files appear and disappear from the folder as you
switch between branches. Similarly, you can watch the
contents of a single file change as you switch between
branches.

Git may ask you to commit changes you've made, before it
will let you switch off a branch you've been working on.
The state of the folder must, from Git's point of view, be
'clean'. It won't allow you to unexpectedly delete files by
branch switching.

Creating branches
You can create a branch from any other (or from a tag or
specific commit). Creating a branch basically gives you
another copy of a set of commits. You may want to branch
off master, off the most recent released version, or off
some other branch.

Git makes branching easy. Branches give you a safe area
in which to play with the code. You can do your work on
branches, then merge back when you've perfected your
changes.

GitHub for Windows

2

managing_development_github_basics_v0.2.odt -- andrew.turner@bristol.ac.uk

The branch you are working on, along with the other
available branches, is displayed at the top of the
application's window.

Clicking on the branch name gives you a menu for
creating and performing other branch related tasks.

Command line / Git shell
To view all the available branches:

$ git branch -a

To switch from one branch to another:

$ git checkout <branch name>

To create a new branch, you specify the name of the new
branch followed by whatever you want to make a copy of.

$ git checkout -b <new branch> <old branch>

To delete a branch:

$ git branch -d <branch name>

However, if Git detects that you are deleting a branch that
hasn't been merged with another branch (i.e. it has
changes that exist only on that branch), it will not let you
delete it. Instead you must use:

$ git branch -D <branch name>

6.3 Add and commit your changes

Git allows you to keep track of the changes you've made
to a repository. However, it only indexes things you tell it to
keep track of. Moreover, you decide the size of each
recorded change.

A commit is a record of changes since the last commit.
When you commit, you are telling git to store the status of
everything you've told it to keep track of.

It is good practice for commits to be small and logically
independent. This is to give a clear history of what has
changed. Also it makes it easier to see at what point
problems may have been introduced, and to undo them
without affecting other parts of the code.

GitHub for Windows
When you have made changes to files within a repository,
the GitHub application will automatically display the fact
you have 'uncommitted changes'.

If you click 'show', then you can see what has changed. By
selecting some or all of the changed files, and by typing a
message to describe the commit, you can commit your
changes to the repository.

Remember, adding and committing is a local operation.
Nothing goes to GitHub unless you 'sync' or 'publish' the
branch.

Command line / Git shell
Once you've made a change, committing it is a two stage

process.

Add the files you want to include in a particular commit:

$ git add <files you want to commit>

Or, if you want to include everything that's changed:

$ git add --all

Then, commit the changes you've just added:

$ git commit -m '<message describing the
changes>'

6.4 Merge your changes

Merging joins together two separate development
histories. It allows you to bring changes from one branch
into another.

With luck, merging should be straightforward. However, if
exactly the same part of a file has changed on both
branches, then there may be conflicts that need to be
resolved manually.

GitHub for Windows
In the 'manage branches' dashboard, you can drag and
drop two branches in order to merge one into the other.

Command line / Git shell
To merge a branch into another, first ensure you are
currently working on the branch you want to insert the
other branch into. For example, if you have been working
on your own my-dev-changes branch, and want to merge
your changes back into dev, then first switch back onto the
dev branch:

$ git checkout dev

Now merge:

$ git merge my-dev-changes

This will bring the new commits on my-dev-changes into
dev.

Git will help you with the resolution of any conflicts, but if
you're unsure about what you're doing. You can always
open a git shell and run:

$ git merge --abort

Which will take you back to how everything was before
you ran the merge.

6.5 Push your changes

Once you're happy with the changes you've made and
committed them, the next step is to push them to GitHub.
(Pushing is the opposite of pulling).

If you didn't pull before making your changes and have
therefore committed changes onto an out of date version
of a branch, then git will not let you push those changes to

3

managing_development_github_basics_v0.2.odt -- andrew.turner@bristol.ac.uk

GitHub. Instead you must first pull, before you are allowed
to push. In this situation the 'pull --rebase' can be very
helpful.

If you have been working on a local branch that does not
exist on GitHub then either you can merge this into a
branch that does exist on GitHub and push that.
Alternatively, you can push your local branch onto GitHub
and make it public.

GitHub for Windows
Pushing is referred to as either 'syncing' or 'publishing' on
the GitHub desktop application. If the application presents
you with the option to sync, then the branch you've been
working on already exists on GitHub. If the applications
presents you with the option to publish, then that indicates
you are working on a branch that only exists locally.

Command line / Git shell
To push a branch:

$ git push origin <branch name>

The command to delete a remote branch is actually a
push command (as opposed to deleting a local branch,
which is a branch command – see above).

To delete a remote branch, you add a colon in front of the
branch name. (Yes, this is a bit odd.)

$ git push origin :<branch name>

7. Other Resources

GitHub Help Pages
https://help.github.com

Git Reference
http://gitref.org/

Everyday GIT With 20 Commands Or So
https://www.kernel.org/pub/software/scm/git/docs/everyday
.html

Git Basics
https://git-scm.com/book/en/v1/Git-Basics

Git tips for beginners
http://www.markjberger.com/git-tips-for-beginners/

Super Quick Git Guide
https://wiki.archlinux.org/index.php/Super_Quick_Git_Guid

Git ready
http://gitready.com/

Undoing, fixing and removing commits in Git
https://sethrobertson.github.io/GitFixUm/fixup.html

Git tips and workflows
http://durdn.com/blog/2012/12/05/git-12-curated-git-tips-
and-workflows/

A simple git branching model

https://gist.github.com/jbenet/ee6c9ac48068889b0912

4

https://gist.github.com/jbenet/ee6c9ac48068889b0912
http://durdn.com/blog/2012/12/05/git-12-curated-git-tips-and-workflows/
http://durdn.com/blog/2012/12/05/git-12-curated-git-tips-and-workflows/
https://sethrobertson.github.io/GitFixUm/fixup.html
http://gitready.com/
https://wiki.archlinux.org/index.php/Super_Quick_Git_Guid
http://www.markjberger.com/git-tips-for-beginners/
https://git-scm.com/book/en/v1/Git-Basics
https://www.kernel.org/pub/software/scm/git/docs/everyday.html
https://www.kernel.org/pub/software/scm/git/docs/everyday.html
http://gitref.org/
https://help.github.com/

