
managing_development_writing_the_manual_v0.2.odt -- andrew.turner@bristol.ac.uk

Managing Development
Writing the Manual

DataSHIELD manuals are generated using roxygen.

1. What is roxygen?

The roxygen package makes documenting code easier. It
complements the standard way of creating manual pages
in R (that is, by writing .Rd files into a man/ directory).
However, roxygen generates these .Rd files automatically
from comments written into the header of your .R scripts.

Process
(1) Write comments in the header of your R scripts.

(2) Within R, call roxygenise() to generate the manuals.

Install roxygen
roxygen is actually provided by the roxygen2 package.
Install in R with:

> install.packages('roxygen2')

2. roxygen header

By adding a specially formatted header into your R scripts,
manual pages can be generated automatically by roxygen.

Each line of the roxygen header must start with #'

Roxygen comments use a simple markup for the different
sections of the manual page.

Sections are identified by tags such as @title,
@description, @example. (Note that to literally write an @
symbol you have use @@.)

2.1 Tags

#' @title
The title of the manual, which is displayed at the top of
each manual page.

#' @description
A brief description of what the function does.

#' @details
If there is more to say about the function write your
explanation in the details section. You can go into as much
detail as you like and this can be a long description about
how the function operates. The details section will appear
after the list of the function's arguments.

#' @param
For each of the arguments that the function takes, include
a separate @param tag that describes the argument and
what kind of object is expected to be passed to it.

#' @return
For each object returned by the function, include a
separate @return tag that describes the object.

#' @author
Add your name as an author. Names should be separated
by a semicolon.

#' @export
The @export tag is used by roxygen to generate the
NAMESPACE file. Include @export if the function needs to be
available to users (i.e. it is not one of the 'internal'
functions).

#' @example
Provide one or more examples of the function to
demonstrate its usage and results. These should be
examples that will work with the test data provided in the
DataSHIELD testing VMs. The example should therefore
give instructions for logging in to the VMs and doing any
preparatory work necessary to demonstrate the function in
question.

#' @seealso
Link to other useful resources. Use the formatting markup
(below) to add weblinks (e.g. \url{}) and links to other
manual pages (e.g. \code{\link{function}})

#' @aliases
You can provide a list of (space separated) different
keywords through which users can find the documentation
when they use '?'.

#' @concept
Add extra keywords through which users can find the
documentation when they use help.search().

2.2 Formatting

You can add formatting to any text you write in the roxygen
header using markup similar to LaTeX.

Text
\emph{italics}
\strong{bold}
\code{code}
\pkg{package_name}
\eqn{a + b}: inline eqution
\deqn{a + b}: display (block) equation

Numbered list:
#' \enumerate{
#' \item First item
#' \item Second item
#' }

Bullet list:
#' \itemize{
#' \item First item
#' \item Second item
#' }

Named list:
#' \describe{
#' \item{One}{First item}
#' \item{Two}{Second item}
#' }

1

managing_development_writing_the_manual_v0.2.odt -- andrew.turner@bristol.ac.uk

Links
To other documentation:
\code{\link{function}}: function in this package
\code{\link[MASS]{stats}}: function in another
package
\link[=dest]{name}: link to dest, but show name

To the web:
\url{http://datashield.ac.uk}
\href{http://datashield.ac.uk}{DataSHIELD
Website}
\email{datashield-dev@@bristol.ac.uk}

2.3 Further info

For more information about roxygen, you can access a
'vignette' which is part of the package.

> vignette('roxygen2')

3. Using roxygen

3.1 Generating documentation from R

Run the roxygenise() function to regenerate
documentation.

If you are working within the root of an R package folder,
the you can run roxygenise() without any arguments. It
will automatically take the headers from the scripts in the
R/ folder and create the appropriate NAMESPACE and .Rd
files in the proper places (i.e. .Rd files in a man/ folder).

Otherwise, you can pass the path to the package folder as
an argument. For example, to generate the documentation
for dsBaseClient:

> library(roxygen2)
> roxygenise('path/to/dsBaseClient')

Alternatively, you can use the devtools package to call
roxygenise() indirectly.

> library(devtools)
> devtools::document('path/to/dsBaseClient')

3.2 Generating documentation from Rstudio

The ability to use roxygen is integrated into Rstudio. You
may want to edit some of the default settings:

From within Rstudio:
(1) Go to the 'Build' tab and select 'Configure Build Tools'.

(2) In the 'Project Options' window select 'Package' from
the drop-down list of 'Package build tools'.

(3) Enable the option 'Generate documentation with
Roxygen'.

(4) Enable all the options in the new window titled
'Roxygen options'

(5) Click the OK button on all windows to finish.

If at any time you want to regenerate the documentation
manually, press Ctrl + Shift + D.

3.3 Committing changes

Making separate commits for code changes and
documentation regeneration creates a slightly cleaner
history. But equally, bundling together code with
corresponding documentation changes is not problematic.

2

