
tutorial_converting_an_R_Script_Part-2_v0.0.odt -- andrew.turner@bristol.ac.uk

Converting an R Script to a
DataSHIELD function
Loading modified versions of the
DataSHIELD packages

1. Client functions

The process for testing client functions is easier than the
process for testing server functions. This is because we
don't need to modify the VMs to test changes to the client.

Typically it is your own computer that acts as the
DataSHIELD client. The aim is to momentarily replace
your installed client package with a client package that
contains your modified version of functions; so that the R
session on your computer can use these modified
versions instead.

Process
(1) If you are not already on the branch that holds the
changes you want to test, checkout that branch.
(2) Start R and use the devtools package to load the
changed package from your computer.

(1) Checkout the code (for example, dsBaseClient)
Navigate to your local copy of the package repository, and
make sure you have checked out the branch which holds
the changes you want to test.

You can checkout the branch that contains those changes
through GitHub for Windows, or through the git shell as
follows:

$ cd /path/to/dsBaseClient
$ git checkout <branch with changes to test>

NOTE: If you want to test someone else's changes, then
you will either need to get a copy of the repositiory that
contains their changes, or update your local copy of that
repository.

If you don't already have a cloned version of the
dsBaseClient repo on your computer, then clone it from
github:

$ git clone
https://github.com/datashield/dsBaseClient.git

If you do have a cloned version of the dsBaseClient repo
on your computer then make sure you are up to date.
Either by pressing 'sync' in GitHub for Windows or through
git shell:

$ git pull origin

Once you know you have a local copy of the new changes
you want to test, you can checkout the branch that
contains those changes.

(2) Load the changes
By checking out the appropriate branch of the package
repository you have made sure that the code you want to

test is available in a folder on your computer. Now you can
start R and use the devtools library to load the version of
package in that folder instead of the version that was
installed with 'install.packages()'.

R
> library(devtools)
>
> # Tell devtools where to find the modfied
package
> devtools::load_all('/path/to/dsBaseClient/')
>
> # Load the other client packages as you
normally would
> library(dsStatsClient)
> library(dsGraphicsClient)
> library(dsModellingClient)

When you now use DataSHIELD the changes to
dsBaseClient will be available to you.

If you subsequently run library(dsBaseClient) then you will
revert to the official installed version of dsBaseClient.
However, you can use devtools::load_all() to keep re-
loading the modified package.

You can repeat this 'load, test, change' cycle until you are
happy. Then you can commit your changes to git, and
push to GitHub.

2. Server functions

Testing server functions involves some extra steps, and
there are few different methods to make functions
available on the VMs.

First, you can input an R script through the Opal web
interface on each VM.

Second, you can install a modified version of the server
side DataSHIELD packages on each VM. This can be
done in multiple ways.

2.1 Add a script, via the Opal web interface
The easiest way to get a function onto the VMs, so that
you can test it is to use the 'Add method' functionality of
the Opal web interface. As follows:

(1) Navigate to Administration > DataSHIELD.
(2) In the 'Methods' section select 'Aggregate' or 'Assign',
depending on what kind of function you want to create.
(3) Click on the 'Add Method'.
(4) Give the new function a name. Add a suffix to the
name to avoid conflicts with existing functions (e.g.
meanDS.new).
(5) For 'type' choose R scirpt
(6) Paste your code into the window. (start the code with
“function(...) {…}”, the function will not work if you
start in the more conventional way “function_name <-
function(...) {...}”).

2.2 Installing a modifed version of a server
package
Installing a modified version of a server package is similar
to the process for client packages: you need to replace

1

tutorial_converting_an_R_Script_Part-2_v0.0.odt -- andrew.turner@bristol.ac.uk

the official released versions of the DataSHIELD server
packages with your modified versions. And you need to do
this on each of the VMs.

There are at least two ways to achieve this. The simplest
is to get your changes onto the VMs by going via GitHub.
(This is possible because GitHub has a dual role for
DataSHIELD. It is a tool for managing the source code,
but also a component of the Opal and DataSHIELD
infrastructure.)

You can only install code onto your VMs that is stored in a
repository that is part of the DataSHIELD organisation on
GitHub. So you cannot use the methods below to install
modified package on the VMs from personal repositories,
for example. This means that only developers who can
commit to the DataSHIELD repositories can use GitHub as
a way install modifed server side packages. Please see
the 'alternative method' below for instructions for
circumventing this.

Process
(1) Make and commit your changes to a new branch.
(2) Push your new branch to GitHub
(3) Pull that branch to the VMs

(1) Make and commit your changes to a new branch
If you want to edit a function in dsBase create an
approptiate branch locally. Either through GitHub for
Windows, or through the git shell, for example:

$ git checkout -b <function_mod> master

Make all your edits on this branch, and then commit your
changes.

(2) Push your new branch to GitHub
Now that you have a branch containing the changes you
want to put onto the VMs, you need to push that branch to
GitHub so that the VMs can access it.

Within GitHub for Windows this pushing is called
'publishing', if the branch you're working on does not
already exist on GitHub. If it does already exist, then it is
refered to as 'syncing'. In both cases the button is in the
same place in the interface, towards the top right. From
the git shell, we simply push:

$ git push origin <function_mod>

(3a) Pull the branch onto the VMs – Method 1
With your modifications to a package pushed to a branch
on GitHub, you can use the VM's Opal web interface to
download and install the code from that branch.

The Opal web interface for each VM is available by at the
IP address of the VM on port number 8080 (and 8443). Go
to your web browser and type:

192.168.56.100:8080

You will see the Opal web interface log in screen. You can
log in with:
username: administrator
password: password

Navigate to Administration > DataSHIELD and you will see
a dashboard with information about the DataSHIELD
packages that are installed. You can replace some or all of
these packages with specific versions pulled from GitHub
by doing the following:
* Remove the package.
* Select 'Add Package'.
* Select 'Install a specific package', and type 'dsBase' for
example.
* In 'advanced options', give the name of the branch that
holds your changes.
* Click add package.
* Remember to repeat this on each VM.

Note: using this method you don't just have to give a
branch name, you could give a specific commit (from any
branch, or a 'tag'). So for example you could downgrade
your VMs to DataSHIELD v3.0.0 by typing “3.0.0”, if you
wanted to.

(3b) Pull the branch onto the VMs – Method 2
With your modifications to a package pushed to a branch
on GitHub, you can use the opaladmin R package to
download and install the code from that branch.

The opaladmin package allows you to run commands from
a DataSHIELD client computer (i.e. your computer) to
adminster opal. In this case, to install a modified version of
a DataSHIELD server packages held on GitHub.

The advantage of this method is that you can issue
commands to all your VMs at once (rather than one by
one through the Opal web interface). The disadvantage is
that we have found that it occasionally inexplicably fails to
work.

R
> library(opal)
> library(opaladmin)
> opals <- datashield.login(logins=logindata)
>
> # remove the official package
> dsadmin.remove_package(opals, pkg='dsBase')
>
> # install the modifed package, where the
branch name
> # is specified in the ref= argument.
> dsadmin.install_package(opals, pkg='dsBase',
ref='<branch name>')
>
> # make the packages functions available
> dsadmin.set_package_methods(opals,
pkg='dsBase')

2.3 Alternative method - Add a modified package
to Opal without access to the DataSIHIELD GitHub
It is possible – but even more convoluted – to add
modified versios of server side packages to the VMs
without using the DataSHIELD github repositories.

Essentialy, you will have to do manually what the Opal
web interface and dsadmin commands above do for you.

Process
(1) Get your modified package onto each of the VMs
(2) Install the modified package on the VMs

2

tutorial_converting_an_R_Script_Part-2_v0.0.odt -- andrew.turner@bristol.ac.uk

(1) Get your modified package onto each of the VMs.
For example, linux users can use rsync:

$ rsync -a dsBase user@192.168.56.100:/home/user

Or, you can push the package to a personal GitHub
repository, and then clone it on the VMs. For example, log
in to the VM (either directly or via ssh) with:
username: administrator
password: password

$ git clone https://github.com/<my
username>/dsBase.git

(2) Install the modified package on the VMs
If you have'nt already, then log into the VMs. Next you
need to start R, but as the 'rserver' user. This will make
anything we install available in Opal.

$ sudo -u rserver R

R
> #Load the devtools package, which is already
installed
> library(devtools)
>
> # Install the package files that were copied
to the VM
> devtools::install('dsBase/', args="--
library='/var/lib/rserver/R/i686-pc-linux-gnu-
library/3.2/'")

The 'args' argument tells devtools to install the package in
the rserver user's package library. The rserver user does
not have permission to install packages anywhere else.

The new dsBase package should be visable and available
through the Opal web interface. Remember to 'publish
methods'. And to repeat this for each VM.

Note: this alternative method is particularly useful if you
want to install a non-datashield R package on the VMs.
For instance, if you want to write datashield functions that
call functions from other analysis packages.

In that case, you can use the 'sudo -u rserver R' command
to start an R session in which you can install packages
using whatever method you need. e.g. from CRAN using
install.packages(). Remember that you may need to set
the library desitination, as above.

3

