
Mind42 API Documentation

Mind42 API Documentation..1
Introduction..2
Authentication & general technical details...2
API methods..3

Mindmap methods...3
mindmapList...3
mindmapGet...4
mindmapSave..6
mindmapCreate..7
mindmapDelete..7
mindmapThumbnail...7

Mindmap Group methods..8
mindmapGroupList...8
mindmapGroupCreate..8
mindmapGroupDelete..8
mindmapGroupRename..9
mindmapGroupAssign..9

User methods..9
userInfo..9

Session methods...10
sessionDelta...10
sessionEnd...11

Revision methods..12
revisionList...12
revisionGet...13
revisionRestore...13

Collaboration management methods..14
collaborationList...14
collaborationInvite..15
collaborationRemove..15
collaborationRemoveInvitation...16

Publishing methods...16
publishedGet..16
publishedSet...18

Recurring JSON structures...18
RoleCode...19
Timestamp...19
UUID..19
Mind map root JSON...19
Mind map node JSON...20
Mind map font JSON...21
Mind map icon code...21
Mind map link JSON...23
Mind map todo JSON..23
Mind map image JSON...24
Mind map delta JSON...24

Mind map delta CREATE JSON..24
Mind map delta UPDATE JSON...25
Mind map delta DELETE JSON..25
Mind map delta MOVE JSON...26

Introduction
Mind42 offers an oAuth2 interface that generally should behave like
Google's oAuth API. Therefore it's a good start to read Googles
documentation as a start:
https://developers.google.com/accounts/docs/OAuth2

Authentication & general technical details
The base URL of Mind42s oAuth2 API is: https://mind42.com/api/oauth2

Currently there are two scopes for the Mind42 API: "read" and "write". A
possible third scope ("account" to access user account actions) might be
added in the future.

To start the process, as described in the Google documentation, let the
users authorize your application by sending them to /api/oauth2/auth with
the described parameters (response_type, client_id, redirect_uri, scope,
state).

Like the Google oAuth implementation also Mind42 offers a redirect_uri
value of "urn:ietf:wg:oauth:2.0:oob".

On this page the user has to sign in, and is asked whether he or she wants
to grant the requested scope to your application. If he or she does, the
configured redirect will be called with an authorization code. This code is
valid for 1 minute and can only be used once.

This authorization code can then be exchanged for an access and a refresh
token. The endpoint for this is /api/oauth2/token. As described in the
Google documentation this is a POST containing the values code, client_id,
client_secret, (the same) redirect_uri as before and grant_type. When
exchanging the authorization code for tokens the grant_type has to be
"authorization_code".

With the received accessToken you can then do API calls. The access token
is valid for 60 minutes and will simply stop working after this time (as
indicated in the "expires_in" response when getting the token).

But you also receive a refreshToken. This token is valid until the user
revokes the grant of your application to access his or her user account.
With the refresh token you can get a new access token, which you then
can use to continue using the API. Unlike Google, Mind42 will currently
always issue a refresh token.

Using the refresh token works exactly like exchanging the
authorization_code for tokens, but this time you provide the refresh token

https://mind42.com/api/oauth2

instead of the authorization code. The only difference is, that the POST
to /api/oauth2/token doesn't have to contain a redirect_uri and the
grant_type must be "refresh_token".

To actually use the API then, call the below listed API endpoints with the
access token as "Authorization: Bearer" HTTP header or access_token
query parameter, as described in the Google documentation.

Generally all API calls will return a JSON string as response. The base form
of this response is:
{

code: 200 (OPTIONAL)
error: "error message" (OPTIONAL)
data: JSON (OPTIONAL)

}

In case an error occurs when calling /api/oauth2/token, only the "error"
field will be set in the response.
In case an error occurs when calling an API endpoint, the "error" message
will be set, the code will be 500 (server error) or some other code specific
to the API call, and data will be null.
In case everything succeeds code will be 200, error will be null, and data
will be set to the JSON response as specified in the API call.

Generally all requests are HTTP GET requests. Only methods where bigger
data (like mind map JSON, or a mind map description) has to be sent to
the server HTTP POST requests will be used.

API methods

Mindmap methods

mindmapList
URL: /api/oauth2/v1/mindmapList
HTTP method: GET
Scope: read
Parameters:

 detailed: BOOLEAN
Returns:
Simple Response
[

{
mindmapId: UUID,
name: STRING

},
...

]

Detailed Response

[
{

mindmapId: UUID,
name: STRING,
role: ROLECODE,
dateEdit: TIMESTAMP,
dateCreation: TIMESTAMP,
published: BOOLEAN,
publishedPublic: BOOLEAN,
collaborators: [

{
userId: UUID,
name: STRING,
role: ROLECODE

},
...

],
mindmapGroups: [

UUID,
...

]
},
...

]

Explanation:
This call returns an array of mind maps in the users account. There is one
parameter:

 detailed: If true, the detailed response as shown above will be sent,
otherwise just the mind map ids and names will be returned.

Each array element is an object with the following properties:

 mindmapId: The id of the mind map.
 name: The mind map name. It is currently taken automatically from

the label of the root node of the mind map.
 role: The role the users has in this mind map. "cr" if the user is the

creator, "ed"/"vi" if he or she's just an invited collaborator.
 dateEdit: Timestamp of the last change to the mind map.
 dateCreation: Timestamp of the creation date of the mind map.
 published: Whether the mind map is published (publicly available

read only view) of the mind map.
 publishedPublic: Only relevant if mind map is published. If true

then the mind map will also be listed in the Mind42 Gallery.
 collaborators: Array of all users of the mind map (including own

user). For each user the id, name and role is supplied.
 groups: Array of group UUIDs. In their Mind42 account users can

assign the mind maps into groups (like the GMail tagging system).
Each group has a UUID. This array contains all the groups UUIDs this
mind map is assigned to.

mindmapGet
URL: /api/oauth2/v1/mindmapGet
HTTP method: GET

Scope: read
Parameters:

 mindmapId: UUID
 online: BOOLEAN

Returns:
{

mindmapId: UUID,
revisionId: NUMBER,
sessionId: UUID, (OPTIONAL)
name: STRING,
role: ROLECODE,
dateCreation: TIMESTAMP,
dateEdit: TIMESTAMP,
published: BOOLEAN,
publishedPublic: BOOLEAN,
collaborators: [

{
userId: UUID,
name: STRING,
role: ROLECODE

},
...

],
root: MINDMAPROOTJSON

}

Explanation:
This call retrieves the JSON of a Mind42 mind map. It has two parameters:

 mindmapId: The UUID of the mind map you want to load.
 online: If true, starts an online editing session.

Regarding the online flag: If false, you will only get the mind map data and
nothing else will happen. If true, the server will start an online editing
session for this mind map. This means that the user will appear as
"currently" online, and other collaborators will see him or her. In this case
you'll receive a sessionId in the response, which you can use for the
sessionDelta API method to participate in an online collaboration. The
online session expires automatically after some time when you don't use
the sessionDelta API call.

The return value is very similar to each line of the mindmapList call:

 mindmapId: The id of the mind map.
 revisionId: The id of the loaded revision. Unlike all other IDs, this is

no UUID, but a simple number.
 sessionID: Only set if the request parameter “online” was true.
 name: The mind map name.
 role: The role the user has in this mind map.
 dateCreation: Timestamp of the creation date of the mind map.
 dateEdit: Timestamp of the last change to the mind map – and

therefore actually the timestamp when this revision was created.
 published: Whether the mind map is published

 publishedPublic: If public, whether the mind map is listed in the
Mind42 public gallery.

 collaborators: Array of all users of the mind map (including own
user). For each user the id, name and role is supplied.

 root: The actual mind map data JSON (the root node).

mindmapSave
URL: /api/oauth2/v1/mindmapSave
HTTP method: POST
Scope: write
Parameters:

 mindmapId: UUID
 revisionId: NUMBER
 overwriteToken: STRING (OPTIONAL)
 root: MINDMAPROOTJSON

Returns:
{

saved: BOOLEAN,
revisionId: NUMBER, (OPTIONAL)
overwriteToken: STRING (OPTIONAL)

}

Explanation:
This call can be used to send a whole mind map to Mind42 to save it. This
is not the mode Mind42 usually works in, as in the online version changes
are sent incrementally. But e.g. for offline use this call can be used. It has
the following parameters:

 mindmapId: The UUID of the mind map you want to save.
 revisionId: The revision id your changes are based on (the last

revision id you got when loading the map).
 overwriteToken: An optional parameter that you can supply to

enforce to overwrite the mind map with your JSON, although it was
changed on the server in the meantime. More about this below.

 root: The mind map JSON.

The return values of the call are as follows:

 saved: A boolean, whether the map was saved or not. If it is false, it
means that there was a revisionId conflict (the map has changed on
the server in the meantime), and an overwriteToken will be present.

 revisionId: Only exists if “saved” is true. Contains the revisionId of
the newly created revision.

 overwriteToken: A string that will only be returned if there was a
conflict on save.

The idea behind the overwrite token is this. If you use the Mind42 API in an
offline way, you'll usually get the mind map when online, edit it when
offline, and try to save the changed JSON when online again. In the
meantime though, the map mind might have been changed on the server.

This is detected using the revisionId. With every save call you'll have to
send a revisionId upon which your changes are based on. It this revisionId
doesn't match with the last known revisionId on the server, it's treated as
a conflict. In case of a conflict you have two options. Either you insist on
overwriting the server JSON with your version of the JSON, or you save the
changed JSON as a new mind map. You might delegate this decision to the
user, using a dialog which asks something like "The mind map you are
trying to save already has been changed on the server. Would you like to
1) save it anyways and overwrite the server version or 2) save the
changed mind map as a new mind map.". In case a new mind map should
be created you can simply save the mind map JSON using the
mindmapCreate call. In case you want to overwrite it, call the
mindmapSave method again, but this time with the overwriteToken you
received. If the correct overwrite token is supplied, the save call will
succeed. However, also if supplying an overwrite token you just received,
the save call could fail in case the mind map already changed again since
receiving the previous overwrite token. In this case the failed call will
include a new overwrite token.

mindmapCreate
URL: /api/oauth2/v1/mindmapCreate
HTTP method: POST
Scope: write
Parameters:

 root: MINDMAPROOTJSON
Returns:
UUID

Explanation:
This call is used to create a new mind map on Mind42. It only has one
parameter:

 root: The mind map JSON.

As can be seen, like mindmapSave, also mindmapCreate takes any mind
map data. So create an empty new mind map, simply send the JSON for a
root node, with some label for the root node (text attribute). The name of
the mind map is automatically taken form the root node label. But this also
allows you to create mind maps with more than the default root node (e.g.
imported mind maps, …).

The call simply returns the UUID if the created mind map on the server. So
the “data” attribute of the response JSON will simply be the string of the
UUID.

mindmapDelete
URL: /api/oauth2/v1/mindmapDelete
HTTP method: GET

Scope: write
Parameters:

 mindmapId: UUID
Returns:
true

Explanation:
This call is used to delete an existing mind map on Mind42. Is has one
parameter:

 mindmapId: The mind map UUID.

If successful the mind map will be deleted from the user account. It can’t
be restored. The return value is simply true – so that “data” attribute of
the response JSON will simply be true.

mindmapThumbnail
URL: /api/oauth2/v1/mindmapThumbnail
HTTP method: GET
Scope: read
Parameters:

 mindmapId: UUID
 size: STRING (OPTIONAL “thumbnail” or “gallery”)

Returns:
PNGIMAGE

Explanation:
This URL can be used to get the PNG image of a mind map. It has two
parameters:

 mindmapId: The mind map UUID.
 size: The size of the thumbnail.

Mind map thumbnails can only be accessed for mind maps the user has
access to (own mind maps, mind maps where the user is a collaborator or
public mind maps). Two sizes of thumbnails are available: 130x90
(size=thumbnail) and 200x170 (size=gallery). If no size is given it defaults
to “thumbnail” and therefore 130x90 pixels.

Mindmap Group methods

mindmapGroupList
URL: /api/oauth2/v1/mindmapGroupList
HTTP method: GET

Scope: read
Parameters: NONE
Returns:
[

{
mindmapGroupId: UUID,
name: STRING

},
...

]

Explanation:
This call returns an array of mind map groups the user created. Each group
simply has a name and an id, and the user can assign one or more mind
map groups to every mind map to organize them.

mindmapGroupCreate
URL: /api/oauth2/v1/mindmapGroupCreate
HTTP method: POST
Scope: write
Parameters:

 name: STRING
Returns:
UUID

Explanation:
This call creates a new mindmap group with the given name. The response
is simply the UUID of the newly created MindmapGroup (like e.g.
mindmapCreate).

mindmapGroupDelete
URL: /api/oauth2/v1/mindmapGroupDelete
HTTP method: GET
Scope: write
Parameters:

 mindmapGroupId: UUID
Returns:
true

Explanation:
This call removes a mind map group with the given UUID. If the call
succeeds it simply returns true.

mindmapGroupRename
URL: /api/oauth2/v1/mindmapGroupRename
HTTP method: POST
Scope: write

Parameters:
 mindmapGroupId: UUID
 name: STRING

Returns:
true

Explanation:
This call simply renames the mindmap group with the given
mindmapGroupId and sets the new given name. If the call succeeds the
response simply is true.

mindmapGroupAssign
URL: /api/oauth2/v1/mindmapGroupDelete
HTTP method: POST
Scope: write
Parameters:

 mindmapId: UUID
 mindmapGroupIds: ARRAY of UUIDs: [UUID, UUID, …]

Returns:
true

Explanation:
Assigns the given mind map groups to the given mind map. Mind map
groups are per user – therefore every user has his own mind map groups,
and all mindmapGroup calls (including this one) can be executed by every
collaboration role (viewer, editor, creator). mindmapGroupAssign replaces
all current group assignments and does not add the given groups the the
already existing assigned groups. So to remove all group assignments
from a mindmap simply use this call with an empty array. If the call
succeeds it simply returns true.

User methods

userInfo
URL: /api/oauth2/v1/userInfo
HTTP method: GET
Scope: read
Parameters:

 userId: UUID (OPTIONAL)
 mindmapId: UUID (OPTIONAL)

Returns:

{
userId: UUID,
name: STRING

}

Explanation:
This call can be used to get more info about a user based on the userId
(currently only the username). This is useful for getting the user info of the
currently logged in user, or if a new collaborator joins an editing session,
to get the name of the given userId.
Of course you can’t simply get the user info for every user on Mind42, but
only the user info from users you are collaborating with. So here’s the
explanation of the parameters:

 userId: If no userId is given, your own user info is returned. So
without any parameters, this call can be used to get info about the
currently logged in user (the user you have the accessToken for).

 mindmapId: If you provide a userId other than your own, you’ll also
have to provide the mind map id this users is collaborating on with
you. So Mind42 will always check whether the given userId is
actually a collaborator of the given mindmapId, and only then will
return the user info.

The return values of the call are as follows:

 userId: The userId.
 name: The name of the user. This is not necessarily the “username”

used to sign in to Mind42, but can be a (non unique) display name
defined by the user. In case the username is an email address and
no display name is set, the part after the “@” will be replaced with
“…” for privacy reasons.

Session methods

sessionDelta
URL: /api/oauth2/v1/sessionDelta
HTTP method: POST
Scope: read (and write for sending deltas)
Parameters:

 sessionId: UUID
 deltas: MINDMAPDELTAJSON (OPTIONAL)

Returns:

{
revisionId: NUMBER/NULL,
deltas: MINDMAPDELTAJSON,
users: [

UUID,
...

],
refresh: STRING (OPTIONAL)

}

Explanation:
This call is the heart of the Mind42 collaboration system. Once you started
an online editing session (mindmapGet with parameter online=true) and
received a sessionId, you’ll have to regularly call this API method to keep
the online editing session alive.

“Being” online means, that other collaborating users of the same mind
map see you as being online right now. When you don’t call sessionDelta
regularly you will be shown as offline to other users after about 30
seconds. But the sessionId is not immediately invalidated when this
happens. You can still use the same sessionId within 30 minutes since it’s
last use. When doing so Mind42 will show the user as back online again.

So to stay online, and be an active part of a collaboration session you
should “ping” the API with the sessionId every few seconds. More on this
later.

But this call is also used to transmit changes to the mind map from the
client to the server and from the server to the client. If you have write
scope, you can send changes to the server using the deltas array. The
response from the server will also contain a deltas array containing all
changes from the server.

 sessionId: The sessionId you received by mindmapGet.
 deltas: A list of deltas that you want to transmit to the server.

The return values of the call are as follows:

 revisionId: The most recent revisionId (including the changes you
sent to the server and the ones received form the server). This can
be NULL in case “refresh” is set.

 deltas: A list of deltas that represent the changes from the server
since you last sessionDelta call.

 users: An array of user UUIDs that are “online” right now. You can
use this to detect whether other users are online right now, and
show them to the user (e.g. using the userInfo API call)

 refresh: A string which is only present in case the session was
invalidated by a revision restore or mindmap overwrite. If the owner
of the mind map restores an older revision, or the last regular
revision got overwritten with a completely new version (e.g. user
mindmapSave with an overwriteToken), you’ll have to start a new
online editing session.

So basically you have to use this call for multiple reasons: To keep the
online editing session alive (even if no other collaborator is online and no
change was made on the client). We call this a “ping” and recommend to
do this every 20 seconds. If there are collaborators online, and you don’t
have any changes to send, you still want to get the changes the others
made. We call this a deltaRead and recommend doing it every 5-10
seconds. Both scenarios mentioned don’t set the deltas parameter and are
therefore possible with the read scope and with every collaboration role
(creator, editor, viewer). The third reason is to push changes you made to
the server. This is only possible with the write scope, and only if you have
the creator or editor role in this mind map collaboration (viewers can’t
change anything on the mind map). In case you have changes to send to
the server you should do this immediately (and bypass the regular 5-10
second interval).

sessionEnd
URL: /api/oauth2/v1/sessionEnd
HTTP method: GET
Scope: read
Parameters:

 sessionId: UUID
Returns:
true

Explanation:
As explained before a session will time out automatically, and other
collaborators will see that a user is no longer online if that happens. If
possible however you can call the sessionEnd call to end a session
immediately. The paramters are:

 sessionId: The sessionId you received by mindmapGet.

If the call is successful it will simply return true.

Revision methods

revisionList
URL: /api/oauth2/v1/revisionList
HTTP method: GET
Scope: read
Parameters:

 mindmapId: UUID
Returns:

[
{

revisionId: NUMBER,
timestamp: TIMESTAMP,
age: NUMBER

},
...

]

Explanation:
This call returns a list of all revisions (current and past versions) of a mind
map. The Mind42 server creates a new revision with every change
(sessionDelta). But not every revision is kept. Generally 1 revision is kept
for every 5 minutes. Every day though a cleanup process is removing
some revisions, and keeps less and less revisions the older the mind map
is. As an example: For the last week 1 revision per 10 minutes is kept, for
the next 3 weeks 1 revision per hour is kept, for the next 5 months 1
revision per day is kept and so on. To get the revision list you have to
supply the following parameters:

 mindmapId: The UUID of the mind map you want to fetch the
revision list for.

The response is an array (sorted by revision age from oldest to newest),
which holds an object for every revision. The properties of these revision
objects are:

 revisionId: The numeric id of the revision (as received by
mindmapGet for example)

 timestamp: The UNIX timestamp of the creation date of this
revision.

 age: The age of the revision in seconds based on the current time.
Since the time zone handling of the timestamp is not really working
yet this is the best way to show how old a revision is.

revisionGet
URL: /api/oauth2/v1/revisionGet
HTTP method: GET
Scope: read
Parameters:

 mindmapId: UUID
 revisionId: NUMBER

Returns:
{

mindmapId: UUID,
revisionId: UUID,
userId: UUID,
timestamp: TIMESTAMP,
root: MINDMAPROOTJSON

}

Explanation:
This call is related to mindmapGet, but only returns a specifc revision
without all the mind map meta data. Together with revisionList this can be

used to browse and show old revisions of a mind map. The parameters
are:

 mindmapId: The UUID of the mind map you want to fetch a revision
for.

 revisionId: The numeric revisionId you want to fetch.

The response object holds the following attributes:

 mindmapId: The mind map id.
 revisionId: The id of the revision.
 userId: The id of the user who created this revision.
 timestamp: The UNIX timestamp of the creation date of this

revision.
 root: The actual mind map data of this revision.

revisionRestore
URL: /api/oauth2/v1/revisionRestore
HTTP method: GET
Scope: write
Parameters:

 mindmapId: UUID
 revisionId: NUMBER

Returns:
true

Explanation:
This call is related to mindmapSave, but instead of providing the full JSON
for the mind map, you specifically request to restore and older existing
revision. Therefore the whole overwriteToken logic isn’t needed here. Of
course this call also only works for creators and editors of the mind map.
The parameters therefore simply are:

 mindmapId: The UUID of the mind map you want to restore a
revision for.

 revisionId: The numeric revisionId you want to restore.

If the call succeeds it will simply return true. Like mindmapSave this will
invalidate all existing sessions and set true refresh flag to “rev_restore”.

Collaboration management methods

collaborationList
URL: /api/oauth2/v1/collaborationList
HTTP method: GET
Scope: read
Parameters:

 mindmapId: UUID
Returns:
{

collaborators: [
{

userId: UUID,
name: STRING,
role: ROLECODE

},
...

],
pending: [

{
invitationId: UUID,
email: STRING,
role: ROLECODE,
url: STRING

},
...

]
}

Explanation:
This call fetches all the information about the collaboration set up of a
mind map. The parameters are:

 mindmapId: The UUID of the mind map you want to query the info
about. You must have access to this mind map (collaboration role
creator, editor or viewer)

As can be read on http://mind42.com/guide/editor/collaboration Mind42
differentiates between publishing and collaborating. While publishing just
allows users to view a mind map, collaboration allows to add other users
to the mind map to edit it. The mind map does not have to be public to
use collaboration.
When setting up a collaboration, the owner of a mind map invites other
users. This happens via email. The user who received the invitation must
have (or create) a Mind42 account. When accepting the invitation (by
clicking the link received in the invitation email), the collaboration mind
map will be added to the invited users account with the role specified by
the owner: editor (allowed to make changes) or viewer (just allowed to
view changes in real time). The viewer role therefore allows the read only
sharing of a mind map without being public (publishing).
The collaborationList command returns all info about the current
collaboration state, and therefore includes all registered collaborators, all
outstanding invitations, and the owner of the mind map.

Here are the details about the return values:

 collaborators: An array of collaboration users, containing there
userId, display name and collaboration role. This is basically the
same as the collaborators property of mindmapGet.

 pending: An array of sent out invitations that haven’t been
accepted yet. Contains the invitationId, the email the invitation was

http://mind42.com/guide/editor/collaboration

sent to, the rolecode and the URL for the receiver to accept the
invitation. This URL can be shown to the owner of the mind map
after creating the invitation in case the actual invitation mail gets
lost, and the owner wants to send the invitation himself to the
invited recipient.

collaborationInvite
URL: /api/oauth2/v1/collaborationInvite
HTTP method: POST
Scope: write
Parameters:

 mindmapId: UUID
 emails: STRING
 text: STRING
 role: ROLECODE

Returns:
true

Explanation:
This call creates and sends collaboration invitations. The parameters are:

 mindmapId: The UUID of the mind map you want to create an
invitations for. You must be the creator of this mind map, otherwise
the call will fail

 emails: The email address or a list of email addresses the invitation
is being sent to. If it’s a list of email addresses, they have to be
separated either using a “,” or “;” or newline. The call might fail if
one of the email addresses is clearly wrong (regex check) or no MX
record for the email host of the email address can be found.

 text: An additional invitation message from the user which will be
added to the invitation email.

 role: The role code for the new collaborations. This can only be “ed”
for editor or “vi” for viewer. It’s not possible to add additional
creators.

If the call succeeds pending invitations will be created (which can be seen
in “pending” of collaborationList) and invitation emails will be sent out. As
mentioned in the parameter description, this call might not only fail for
insufficient rights for the mind map, but also if there is a problem sending
the emails, or with the email addresses. If everything worked without any
errors the call will simply return true.

collaborationRemove
URL: /api/oauth2/v1/collaborationRemove
HTTP method: GET
Scope: write

Parameters:
 mindmapId: UUID
 userId: UUID (OPTIONAL)

Returns:
true

Explanation:
This call serves a double use. A creator of a mind map (role “cr”) can use it
to remove other collaborators of a mind map (with the roles “ed” and “vi”)
by supplying a userId. Collaborators on the other hand can use it only to
remove themselves from a collaboration (no userId given). A mind map
where the user only has “ed” or “vi” access to, also shows up in his or her
mind map list. But the user of course can’t call “mindmapDelete” to get rid
of it, since only the creator of the mind map can delete it. Therefore the
user can only remove him- or herself from the collaboration, therefore
“giving up” the right to access the mind map. The parameters are:

 mindmapId: The UUID of the mind map where you want to remove
a collaboration.

 userId: Supplied only if used by the creator of a mind map to
remove a specific user. The creator can’t remove his or her own
userId. All other collaborators can only remove their own
collaboration and must not supply a userId.

If the call succeeds the collaboration will be removed and the call simply
returns true.

collaborationRemoveInvitation
URL: /api/oauth2/v1/collaborationRemoveInvitation
HTTP method: GET
Scope: write
Parameters:

 mindmapId: UUID
 invitationId: UUID

Returns:
true

Explanation:
This call deletes an invitation that has not been accepted yet (pending).
This allows creators to revoke invitations that have been sent out
accidentally or aren’t needed any longer. The parameters are:

 mindmapId: The UUID of the mind map where you want to remove
a collaboration invitation for.

 invitationId: The invitationId to remove.

If the call succeeds the collaboration invitation will be removed and the
call simply returns true.

Publishing methods

publishedGet
URL: /api/oauth2/v1/publishedGet
HTTP method: GET
Scope: read
Parameters:

 mindmapId: UUID
Returns:
{

title: STRING,
published: BOOLEAN,
publishedPublic: BOOLEAN,
description: STRING,
tags:[

STRING,
...

],
urls: {

public: STRING,
embed: STRING

],
role: ROLECODE

}

Explanation:
This call retrieves all the information about the publishing state of a mind
map. The parameters are:

 mindmapId: The UUID of the mind map you want to query the info
about. You must have access to this mind map (collaboration role
creator, editor or viewer)

As can be read on http://mind42.com/guide/editor/collaboration Mind42
differentiates between publishing and collaborating. When publishing a
mind map you basically make a publicly available read only version of the
mind map available to everybody who has the link to the mind map. The
public map page will show the mind map, a description and tags entered
by the user, and the possibility to like and comment the map. So unlike a
“viewer” collaborator visitors of published maps will not see the mind map
editor. Furthermore users have the decision, if they publish their mind
map, whether they also want to include it in the public mind map gallery
on Mind42.com, so that maybe other people find their map (through
popular, search or related matches) and comment their work. This is called
publishing it publicly. It’s also possible to embed the mind map (e.g. in
blogs or websites), which is a separate URL, which only shows the mind
map viewer, but no comments, …

Here are the details about the return values:

http://mind42.com/guide/editor/collaboration

 title: The title of the mind map – in case you need to show it in the
UI. The title currently can’t be set by the user, but is taken from the
text of the root node.

 published: Boolean whether the mind map is published or not.
 publishedPublic: Boolean whether the mind map is published

publicly or not.
 description: The description of the mind map as shown on the

public map page (this is plain text, not HTML or so).
 tags: An array containing the tags assigned to the mind map. They

are used in the public mind map gallery. They can’t contain spaces
and commas and are lowercase.

 links: An object containing the two different public link types. The
public link points to the public map page (with comments, …), while
the embed link only shows the map is meant to be used for
embedding the mind map e.g. using iframes. This links of course
only work when published is true.

 role: The collaboration role the requesting user has for this mind
map. Only creators can change these values, but all other
collaborators can of course receive the public links and so on.

publishedSet
URL: /api/oauth2/v1/publishedSet
HTTP method: POST
Scope: write
Parameters:

 mindmapId: UUID
 published: BOOLEAN
 publishedPublic: BOOLEAN
 description: STRING
 tags: ARRAY

Returns:
true

Explanation:
This call sets the values regarding mind map publishing. This can only be
called by the creator of a mind map and will fail otherwise. The meaning of
the parameters is described in publishedGet. The parameters are:

 mindmapId: The UUID of the mind map you want to update the
publishing settings of (only works for creators).

 published: Boolean whether the mind map is published or not.
 publishedPublic: Boolean whether a published mind map should

appear in the Mind42.com mind map gallery (meaningless if
published = false).

 description: A description about the mind map entered by the used
in plain text (no HTML).

 tags: A JSON array containing each tag as a string. The strings may
not contain spaces and commas (“ “ and “,”).

The return value (the value of the “data” attribute in the response) is a
simple boolean “true”, like for mindmapDelete – if the call doesn’t fail.

Recurring JSON structures
The JSON explained in the API methods often referred to recurring
standardized JSON structures. Following are the specifications to those
structures.

A word on how reliable these specification are:
Mind42 started in 2007 and has built up a huge amount of old data in its
database. The currently described JSON format is the 3rd version. If a
revision is requested, that still contains older version JSON it will be
converted on the fly. But, it can always happen that a specific mind map is
not 100% correct JSON. Something specified as a NUMBER, could be a
STRING (or vice versa), some value that should be there, isn’t and so on.
Mind42 itself is built to deal as gracefully as possible with this. Missing
values are covered by default values our application assigns, wrong data
formats are dealed with by parsing strings to numbers if needed and so
on. You application should do this as well. At the same time, with the start
of this API we won’t accept invalid JSON. The server will either throw an
error, or silently use default values or converted values to be stored in the
database (as explained above).

RoleCode
Type: STRING
Value: “cr”, “ed” or “vi”
Explanation:
In Mind42 there are three different roles of user participation in a
collaborative mind map. There is always one creator (code: "cr") who
created the mind map, is able to add and remove collaborators, and to the
delete the mind map. Editors (code: "ed") are collaborating users who are
allowed to make edits to the mind map. Finally viewers (code: "vi") are
allowed to open the mind map, but can't make any changes to it.

Timestamp
Type: NUMBER
Value: UNIX timestamp in milliseconds - e.g. 1371047914248
Explanation:
Most timestamps in Mind42 are represented using UNIX timestamps in
milliseconds (milliseconds since 01/01/1970 UTC). Unfortunately currently
they are not really based on the UTC, but on the local Austrian time
(CET/CEST) which is 1/2 hours off.

UUID
Type: STRING
Value: e.g. "f8f99f37-8866-4f0c-a2f4-dc19acba2b8f"

Explanation:
Mind42 uses standard 128bit UUIDs as described in the Wikipedia:
http://en.wikipedia.org/wiki/Universally_unique_identifier

Mind map root JSON
Type: OBJECT
Value:
{

id: UUID+,
children: [

MINDMAPNODEJSON,
...

],
attributes: {

type: “rootnode”
text: STRING,

}
}

Explanation:
This is the JSON for a root node, but you can clearly recognize the basic
structure of every node in Mind42 here. Every node has an “id”, an array
of “children”, and an “attributes” object. The “attributes” object always
has a “type” attribute. In the case of the root node this type is set to
“rootnode”. Here a general explanation of the object attributes:

 id: The node id. Basically it’s just a string that has to be unique
within the mind map. Newer Mind42 versions use UUIDs for this, but
this also could be a longer or shorter string. (Therefore it says
“UUID+” as the type)

 children: An array of child nodes. See the various Mindmap JSON
node types for details.

 attributes: An object containing the nodes attributes:
o type: “rootnode” for root nodes
o text: The node caption of the node. This string is HTML

formatted (newlines represented using
, < using < and
so on)

Mind map node JSON
Type: OBJECT
Value:

http://en.wikipedia.org/wiki/Universally_unique_identifier

{
id: UUID+,
children: [

MINDMAPNODEJSON,
...

],
attributes: {

type: “container”/”image”,
text: STRING,
font: FONTJSON,
icon: ICONCODE,
links: LINKJSON,
note: STRING,
todo: [

TODOJSON,
...

],
image: null/IMAGEJSON,
lastEditor: null/UUID,
lastEdit: null/TIMESTAMP

}
}

Explanation:
This is the JSON for a node. The basic structure, as explained in the root
node, applies. Here’s the explanation about the attributes:

 type: “container” or “image”. This decides whether an attached
image is rendered embedded in the mind map (layout), or if it’s a
text node that maybe also has an image attached, but not shown in
the layout.

 text: The node caption of the node. This string is HTML formatted
(newlines represented using
, < using < and so on)

 font: Explained in “Mind map font JSON”
 icon: Explained in “Mindmap icon code”
 links: Explained in “Mindmap link JSON”
 note: Stores the note of a node. This is HTML encoded text.

Currently the Mind42 editor only offers formatting options for
headings, unordered list, ordered lists and bold text, but basically all
HTML is shown.

 todo: Array of todos, as explained in “Mindmap todo JSON”
 image: null, if not image is referenced, or an “Mindmap image

JSON” object. If type is “container”, the image should not be shown
in the mind map, but it should be pointed to like a link. If it’s
“image”, the image should be shown within the mind map layout
using the image JSON width and height values.

 lastEditor: A user UUID which stores the last user which changed
the node. This is currently not used.

 lastEdit: A timestamp which stores the last time the node was
changed. This is currently not used.

Mind map font JSON
Type: OBJECT

Value:
{

color: STRING,
size: STRING,
bold: STRING/BOOLEAN,
italic: STRING/BOOLEAN,
underlined: STRING/BOOLEAN

}

Explanation:
This object stores the formatting options for a node:

 color: In Mind42 the selected color is currently only applied on the
lines, not on the font. This line color is inherited to the children,
unless otherwise specified. The default color is “#8971c1”. The
colors are usually rendered with 60% alpha, so they seem a little bit
brighter in the app. The default value is “inherit” – this makes the
previously explained inheritance mechanism kick in. Mind42
supports 10 colors. These are the supported colors:

o #fc6e6e
o #fea852
o #8ac25b
o #28cca3
o #3fbaee
o #6589cd
o #8971c1
o #bd6cc6
o #e96398
o #777777

 size: Mind42 offers slight variations in the rendered font size of the
nodes. There are three size variations: “small”, “medium”, “large”,
which are usually rendered with 11px, 13px and 15px. The default
value (which defaults to medium rendering) is “default”. So overall,
the supported values are:

o default
o small
o medium
o large

 bold: Might be “default”, in which case Mind42 renders 1st level
nodes bold, higher level nodes regular. If it’s not “default”, it has to
be a boolean true or false.

 italic: Might be “default”, in which case Mind42 renders the node
non italic. If it’s not “default”, it has to be a boolean true or false.

 italic: Might be “default”, in which case Mind42 renders the node
non underlined. If it’s not “default”, it has to be a boolean true or
false.

Mind map icon code
Type: STRING
Value: e.g. “”, “star” or “star;shield”

Explanation:
The icon code is a string that stores none, one or more icons that are
shown with a node. If no icon is shown, it’s an empty string. If one icon is
shown, it’s simply the icon name. If more than one icon is shown, the icon
names are concatenated using “;”. These are the supported icon names:

 star
 shield
 award
 thumb_down
 thumb_up
 lock
 key
 accept
 add
 comments
 telephone
 email
 book
 photo
 lightbulb
 lightning
 help
 information
 warning
 clock
 bell
 bug
 emoticon_smile
 emoticon_unhappy
 heart
 user
 cart
 coins
 dollar
 euro
 flag_red
 flag_green
 flag_blue
 flag_yellow
 flag_pink
 nr1
 nr2
 nr3
 nr4
 nr5

 nr6
 nr7
 nr8
 nr9
 nr10
 progress_0
 progress_25
 progress_50
 progress_75
 progress_100

Mind map link JSON
Type: OBJECT
Value:
{

url: STRING, (OPTIONAL)
wiki: STRING, (OPTIONAL)
mail: STRING, (OPTIONAL)
map: UUID (OPTIONAL)

}

Explanation:
Mind42 supports four different link types: Web links, Wikipedia links, Mail
links and Mind map links. Each node can have one of each type assigned,
which is represented using a JSON object with the link type as key, and the
linked resource as value. If a node has no link, this is an empty object ({}).
The link types:

 url: A simple STRING containing the URL of a website (including the
protocol). E.g. http://mind42.com

 wiki: A simple STRING containing the URL to an English Wikipedia
page (including the protocol). Currently only links to the English
Wikipedia are supported. E.g. http://en.wikipedia.org/wiki/Tea

 mail: A simple STRING of an email address.
 map: A UUID referencing another mind map on Mind42. While this

theoretically could be anything, this is only useful if the user has
actually access to the linked mind map. This is not always the case.
For example if the creator of a mind map linked another map only he
or she has access to, but a collaborator doesn’t.

Mind map todo JSON
Type: OBJECT
Value:
{

progress: STRING,
priority: STRING,
date: TIMESTAMP,
description: STRING

}

Explanation:
This objects represents one todo in the todo list of a node. It has the
following properties:

http://en.wikipedia.org/wiki/Tea
http://mind42.com/

 progress: A string representing the progress in percent. Only the
values “0”, “25”, “50”, “75” and “100” are supported.

 priority: A string representing the priority of the todo. “0” for low,
“1” for normal, and “2” for high.

 date: A timestamp representing the due date of the todo. Currently
only the date part of this timestamp is used.

 description: A text description of the todo. This string is plain text –
not HTML like the node caption.

Mind map image JSON
Type: OBJECT
Value:
{

src: STRING,
width: STRING,
height: STRING

}

Explanation:
This objects represents an image attached to a node. It has the following
properties:

 src: A public accessible URL pointing to an image on the WEB.
 width: A string saving the width in pixels (without unit) the image

should be shown with (e.g. smaller than the real image size). This
can be a floating point number (e.g. “76.3”).

 height: A string saving the height in pixels (without unit) the image
should be shown with (e.g. smaller than the real image size). This
can be a floating point number (e.g. “76.3”).

Mind map delta JSON
Type: ARRAY
Value:
[

MINDMAPDELTACREATEJSON,
MINDMAPDELTAUPDATEJSON,
MINDMAPDELTADELETEJSON,
MINDMAPDELTAMOVEJSON,
...

]

Explanation:
This array lists deltas (changes) that have to be applied to the mind maps
last known state. You send changes you made to the server using the
sessionDelta command, and will receive changes you don’t know about
from the server as response. These deltas have to be sent and applied in
the order they are listed in the array. There are four types of deltas:
CreateDeltas, UpdateDeltas, DeleteDeltas and MoveDeltas. See the
according JSON documentation sections for details.

Mind map delta CREATE JSON
Type: OBJECT

Value:
{

userId: STRING (SERVER ONLY),
action: ”create”,
id: STRING,
parentId: STRING,
index: NUMBER,
attributes: MINDMAPNODEJSON.attributes (OBJECT)

}

Explanation:
This objects represents a new node that should be inserted into the mind
map:

 userId: The userId this change originated from (e.g. to visualize live
changes with different colors per user). This is only set when
receiving deltas from the server. It doesn’t need to be set when
sending changes from the client to the server.

 action: Create deltas always have the action “create”
 id: As described for the MindMapNodeJson the client has to create

an ID String (e.g. UUID) for the node. The id doesn’t matter, as long
as it’s unique within the mind map. If it already exists, sending such
a delta will fail.

 parentId: The node ID of the parent node this new node should be
inserted into. E.g. another nodes id, or the root node id. If this node
id doesn’t exist on the servers version of the mind map sending this
delta will fail.

 index: A numeric index at which position of the parent nodes
children the new node should be inserted. It’s a zero based index. 0
means that it should be the first child of the parent, or that it should
be inserted before the first existing child of the parent, 1 that it
should be the second node (meaning that it should be inserted after
the first existing child, or before the second existing child), and so
on.

 attributes: All the attributes of the new node as described in
MindmapNodeJson.

Mind map delta UPDATE JSON
Type: OBJECT
Value:
{

userId: STRING (SERVER ONLY),
action: ”update”,
id: STRING,
attributes: MINDMAPNODEJSON.attributes (PARTIAL OBJECT)

}

Explanation:
This objects represents changes to an existing node:

 userId: The userId this change originated from (e.g. to visualize live
changes with different colors per user). This is only set when
receiving deltas from the server. It doesn’t need to be set when
sending changes from the client to the server.

 action: Update deltas always have the action “update”
 id: The ID of the node to update.
 attributes: You only have to send the attributes which actually

changed. Besides that the attribute specification as described in
MindmapNodeJson apply.

Mind map delta DELETE JSON
Type: OBJECT
Value:
{

userId: STRING (SERVER ONLY),
action: ”delete”,
id: STRING

}

Explanation:
This objects represents the removal of a mind map node:

 userId: The userId this change originated from (e.g. to visualize live
changes with different colors per user). This is only set when
receiving deltas from the server. It doesn’t need to be set when
sending changes from the client to the server.

 action: Delete deltas always have the action “delete”
 id: The ID of the node to remove from the mind map.

Mind map delta MOVE JSON
Type: OBJECT
Value:
{

userId: STRING (SERVER ONLY),
action: ”move”,
id: STRING,
parentId: STRING,
index: NUMBER

}

Explanation:
This objects represents the move of a mind map node to a new parent:

 userId: The userId this change originated from (e.g. to visualize live
changes with different colors per user). This is only set when
receiving deltas from the server. It doesn’t need to be set when
sending changes from the client to the server.

 action: Move deltas always have the action “move”
 id: The ID of the node to move.
 parentId: The node ID of the new parent node.
 index: The numeric index (as described in the

MindmapDeltaCreateJson) at which position the node should be
inserted at the new parent.

	Mind42 API Documentation
	Introduction
	Authentication & general technical details
	API methods
	Mindmap methods
	mindmapList
	mindmapGet
	mindmapSave
	mindmapCreate
	mindmapDelete
	mindmapThumbnail

	Mindmap Group methods
	mindmapGroupList
	mindmapGroupCreate
	mindmapGroupDelete
	mindmapGroupRename
	mindmapGroupAssign

	User methods
	userInfo

	Session methods
	sessionDelta
	sessionEnd

	Revision methods
	revisionList
	revisionGet
	revisionRestore

	Collaboration management methods
	collaborationList
	collaborationInvite
	collaborationRemove
	collaborationRemoveInvitation

	Publishing methods
	publishedGet
	publishedSet

	Recurring JSON structures
	RoleCode
	Timestamp
	UUID
	Mind map root JSON
	Mind map node JSON
	Mind map font JSON
	Mind map icon code
	Mind map link JSON
	Mind map todo JSON
	Mind map image JSON
	Mind map delta JSON
	Mind map delta CREATE JSON
	Mind map delta UPDATE JSON
	Mind map delta DELETE JSON
	Mind map delta MOVE JSON

