Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Table of Contents

...

Code Block
languagexml
subset.4<-subset(dataframe, x < 5) #subset of the whole dataframe where x < 5
subset.4<-subset(dataframe, x == 5) #subset of the whole dataframe where x = 5
  • create a subset of sim.alspac for males called subset.male and for females called subset.female
  • How many participants are female and how many are male? HINT: Use dim to check the dimensions of subset.male and subset.female.  

Exploring the data

  • Get object summary statistics by using the summary function on subset.male and subset.female
  • Use the boxplot function to plot BMI at age 7 against gender. HINT: You will only need to use the arguments formula= and data=
  • Output your boxplot as a .png file using the png function. 

  • Use the hist function to plot histograms of BMI age 7 for females and males.  HINT: You can layer graphs over one another by using the argument add=T in the second histogram.  Line colour of the histogram can be set using the argument e.g. border="red"
  • Make the plot more readable by using the legend to add an appropriate key.
  • Output your graph histogram as a .png file using the png function. 

Modelling

Rounding numbers

signif(x, digits = 6)

# set how many significant figures using digits =

or use

format(round(x, 2), nsmall = 2)

# for two d.p

Adding text to graphs

...


  • Use the plot function to create a scatter plot of height and weight age 7 for males. 
  • Use lm function to generate a linear model called lm1 for the two variables.  HINT: R uses formula notation in formula argument e.g. formula=y~x
  • Use the summary function on lm1 to get the coefficients.
  • You can add your regression line to the scatterplot by running the abline function  on lm1 after your plot function