This tutorial assumes you have already installed the DataSHIELD test environment . Install takes around half an hour.

It is recommended that you familiarise yourself with R first by sitting our Session 1: Introduction to R tutorial

DataSHIELD users can request subscription to the DataSHIELD forum using your university email address to:

  • post questions on using DataSHEILD
  • stay informed about package changes
  • report to us any error you may encounter

All other DataSHIELD general enquiries should go to datashield-research@bristol.ac.uk

Introduction

This tutorial introduces users R/RStudio users to DataSHIELD commands and syntax. Throughout this document we refer to R, but all commands are run in the same way in Rstudio. This tutorial contains a limited number of examples; further examples are available in each DataSHIELD function manual page that can be accessed via the help function.

The DataSHIELD approach: aggregate and assign functions

DataSHIELD commands call functions that range from carrying out pre-requisite tasks such as login to the data providers, to generating basic descriptive statistics, plots and tabulations. More advance functions allow for users to fit generalized linear models and generalized estimating equations models. R can list all functions available in DataSHIELD.

This section explains the functions we will call during this tutorial. Although this knowledge is not required to run DataSHIELD analyses it helps to understand the output of the commands. It can explain why some commands call functions that return nothing to the user, but rather store the output on the server of the data provider for use in a second function.

In DataSHIELD the person running an analysis (the client) uses client-side functions to issue commands (instructions). These commands initiate the execution (running) of server-side functions that run the analysis server-side (behind the firewall of the data provider). There are two types of server-side function: assign functions and aggregate functions .

 

 

 

 

Assign functions do not return an output to the client, with the exception of error or status messages. Assign functions create new objects and store them server-side either because the objects are potentially disclosive, or because they consist of the individual-level data which, in DataSHIELD, is never seen by the analyst. These new objects can include:

  • new transformed variables (e.g. mean centred or log transformed variables)
  • a new variable of a modified class (e.g. a variable of class numeric may be converted into a factor which R can then model as having discrete categorical levels)
  • a subset object (e.g. a table may be split into males and females).
    Assign functions return no output to the client except to indicate an error or useful messages about the object store on
    server-side.

Aggregate functions analyse the data server-side and return an output in the form of aggregate data (summary statistics that are not disclosive) to the client. The help page for each function tells us what is returned and when not to expect an output on client-side.

Getting ready

Import the Opal Servers

Start the Opal Servers

You can check whether the Opal test servers are ready by typing the following into your navigation bar

http://192.168.56.100:8080 and http://192.168.56.101:8080

or

https://192.168.56.100:8443 and https://192.168.56.101:8443

Start R/RStudio and load packages

#update dataSHIELD packages
update.packages(repos='http://cran.obiba.org') 
 
#load libraries
library(opal)
library(dsBaseClient)
library(dsStatsClient)
library(dsGraphicsClient)
library(dsModellingClient)

The output in R/RStudio will look as follows:

library(opal)
#Loading required package: RCurl
#Loading required package: bitops
#Loading required package: rjson
library(dsBaseClient)
#Loading required package: fields
#Loading required package: spam
#Loading required package: grid
library(dsStatsClient)
library(dsGraphicsClient)
library(dsModellingClient)

You might see the following status message that you can ignore. The message refers to the blocking of functions within the package. The following objects are masked from ‘package:xxxx’

Login template

A Horizontal-DataSHIELD process starts with a login to one or more Opal servers that hold the data behind the data provider firewall. Formatting of the login details is required to log into Opal servers:

data(logindata)
logindata

# server url                 user          password table
# study1 192.168.56.100:8080 administrator password CNSIM.CNSIM
# study2 192.168.56.101:8080 administrator password CNSIM.CNSIM

If you are not using your own data, information for the login table is obtained from the data provider. Please follow the appropriate procedures to gain clearance to analyse their data.

Log in to the remote servers

Your login details must be loaded via the data() function or read into the R session first.

opals <- datashield.login(logins=logindata,assign=TRUE)
> opals <- datashield.login(logins=logindata,assign=TRUE)
Logging into the collaborating servers

  No variables have been specified.
  All the variables in the opal table
  (the whole dataset) will be assigned to R!

Assigining data:
study1...
study2...

Variables assigned:
study1--LAB_TSC, LAB_TRIG, LAB_HDL, LAB_GLUC_ADJUSTED, PM_BMI_CONTINUOUS, DIS_CVA, MEDI_LPD, DIS_DIAB, DIS_AMI, GENDER, PM_BMI_CATEGORICAL
study2--LAB_TSC, LAB_TRIG, LAB_HDL, LAB_GLUC_ADJUSTED, PM_BMI_CONTINUOUS, DIS_CVA, MEDI_LPD, DIS_DIAB, DIS_AMI, GENDER, PM_BMI_CATEGORICAL

In Horizontal DataSHIELD pooled analysis the data are harmonized and the variables given the same names across the studies, as agreed by all data providers.

The datashield.login function from the R package opal allows users to login and assign data to analyse from the Opal server in a server-side R session created behind the firewall of the data provider.

All the commands sent after login are processed within the server-side R instance only allows a specific set of commands to run (see the details of a typical horizontal DataSHIELD process). The server-side R session is wiped after loging out.

If we do not specify individual variables to assign to the server-side R session, all variables held in the Opal servers are assigned. Assigned data are kept in a data frame named D by default. Each column of that data frame represents one variable and the rows are the individual records.

Assign individual variables on login

Users can specify individual variables to assign to the server-side R session. It is best practice to first create a list of the Opal variables you want to analyse as then not all variables are held in the R session.

myvar <- list('LAB_HDL', 'GENDER')
opals <- datashield.login(logins=logindata,assign=TRUE,variables=myvar)

#Logging into the collaborating servers

#Assigining data:
#study1...
#study2...

#Variables assigned:
#study1--LAB_HDL, GENDER
#study2--LAB_HDL, GENDER

 

 

Assigned data are kept in a data frame (table) named D by default. Each row of the data frame are the individual records and each column is a separate variable.

Basic statistics and data manipulations

Descriptive statistics: variable dimensions and class

Almost all functions in DataSHIELD can display split results (results separated for each study) or pooled results (results for all the studies combined). This can be done using the type='split' and type='combined' argument in each function. The majority of DataSHIELD functions have a default of type='combined'. The default for each function can be checked in the function help page.

It is possible to get some descriptive or exploratory statistics about the assigned variables held in the server-side R session such as number of participants at each data provider, number of participants across all data providers and number of variables. Identifying parameters of the data will facilitate your analysis.

opals <- datashield.login(logins=logindata,assign=TRUE)
ds.dim(x='D')

The output of the command is shown below. It shows that in study1 there are 2163 individuals with 11 variables and in study2 there are 3088 individuals with 11 variables:

> opals <- datashield.login(logins=logindata,assign=TRUE)
Logging into the collaborating servers
  No variables have been specified. 
  All the variables in the opal table 
  (the whole dataset) will be assigned to R!
Assigning data:
study1...
study2...
Variables assigned:
study1--LAB_TSC, LAB_TRIG, LAB_HDL, LAB_GLUC_ADJUSTED, PM_BMI_CONTINUOUS, DIS_CVA, MEDI_LPD, DIS_DIAB, DIS_AMI, GENDER, PM_BMI_CATEGORICAL
study2--LAB_TSC, LAB_TRIG, LAB_HDL, LAB_GLUC_ADJUSTED, PM_BMI_CONTINUOUS, DIS_CVA, MEDI_LPD, DIS_DIAB, DIS_AMI, GENDER, PM_BMI_CATEGORICAL


> ds.dim(x='D')
$study1
[1] 2163   11

$study2
[1] 3088   11
ds.dim('D', type='combine')
#$pooled.dimension
#[1] 5251   11
ds.colnames(x='D')
#$study1
# [1] "LAB_TSC"            "LAB_TRIG"           "LAB_HDL"            "LAB_GLUC_ADJUSTED"  "PM_BMI_CONTINUOUS"  "DIS_CVA"
# [7] "MEDI_LPD"           "DIS_DIAB"           "DIS_AMI"            "GENDER"             "PM_BMI_CATEGORICAL"

#$study2
# [1] "LAB_TSC"            "LAB_TRIG"           "LAB_HDL"            "LAB_GLUC_ADJUSTED"  "PM_BMI_CONTINUOUS"  "DIS_CVA"
# [7] "MEDI_LPD"           "DIS_DIAB"           "DIS_AMI"            "GENDER"             "PM_BMI_CATEGORICAL"
ds.class(x='D$LAB_HDL')
#$study1
#[1] "numeric"

#$study2
#[1] "numeric"

Descriptive statistics: quantiles and mean

As LAB_HDL is a numeric variable the distribution of the data can be explored.

ds.quantileMean(x='D$LAB_HDL')
# Quantiles of the pooled data
#       5%      10%      25%      50%      75%      90%      95%     Mean 
# 1.042161 1.257601 1.570058 1.901810 2.230529 2.521782 2.687495 1.561957
ds.mean(x='D$LAB_HDL')
#$`Global mean`
#[1] 1.561957

Descriptive statistics: assigning variables

So far all the functions in this section have returned something to the screen. Some functions (assign functions) create new objects in the server-side R session that are required for analysis but do not return an anything to the client screen. For example, in analysis the log values of a variable may be required.

ds.log(x='D$LAB_HDL')
ds.log(x='D$LAB_HDL', newobj='log_lab_hdl')
ds.length (x='LAB_HDL_log')
#$total.number.of.observations
#[1] 5251
ds.length(x='D$LAB_HDL')
#$total.number.of.observations
#[1] 5251

The ds.assign function enables the creation of a new objects in the server-side R session to be used in later analysis. ds.assign can be used to evaluate simple expressions passed on to its argument toAssign and assign the output of the evaluation to a new object.

ds.assign(toAssign='D$LAB_HDL-1.562', newobj='LAB_HDL.c')

Further DataSHIELD functions can now be run on this new mean-centred variable LAB_HDL.c . The example below calculates the mean of the new variable LAB_HDL.c which should be approximately 0.

ds.mean(x='LAB_HDL.c')
#$`Global mean`
#[1] -4.280051e-05

Generating contingency tables

The function ds.table1D creates a one-dimensional contingency table of a categorical variable. The default is set to run on pooled data from all studies, to obtain an output of each study set the argument type='split' .

ds.table1D(x='D$GENDER')
# $counts
#       D$GENDER
# 0         2677
# 1         2574
# Total     5251
# $percentages
#       D$GENDER
# 0        50.98
# 1        49.02
# Total   100.00
# $validity
# [1] "All tables are valid!"

In DataSHIELD tabulated data are flagged as invalid if one or more cells have a count of between 1 and the minimal cell count allowed by the data providers. For example data providers may only allow cell counts ≥ 5).

The function ds.table2D creates two-dimensional contingency tables of a categorical variable. Similar to ds.table1D the default is set to run on pooled data from all studies, to obtain an output of each study set the argument *type='split'.

ds.table2D(x='D$DIS_DIAB', y='D$GENDER')
# $counts
# $counts$`pooled-D$DIS_DIAB(row)|D$GENDER(col)`
#          0    1 Total
# 0     2625 2549  5174
# 1       52   25    77
# Total 2677 2574  5251

# $rowPercent
# $rowPercent$`pooled-D$DIS_DIAB(row)|D$GENDER(col)`
#           0     1 Total
# 0     50.73 49.27   100
# 1     67.53 32.47   100
# Total 50.98 49.02   100

# $colPercent
# $colPercent$`pooled-D$DIS_DIAB(row)|D$GENDER(col)`
#            0      1  Total
# 0      98.06  99.03  98.53
# 1       1.94   0.97   1.47
# Total 100.00 100.00 100.00

# $chi2Test
# $chi2Test$`pooled-D$DIS_DIAB(row)|D$GENDER(col)`
# 	Pearson's Chi-squared test with Yates' continuity correction
# data:  pooledContingencyTable
# X-squared = 7.9078, df = 1, p-value = 0.004922
# $validity
# [1] "All tables are valid!"

Generating graphs

It is currently possible to produce 3 types of graphs in DataSHIELD:

Scatter plots are not possible in DataSHIELD because they display individual data points and are hence potentially disclosive. Instead it is possible to draw a contour plot or a heatmap plot if the aim is to visualise a correlation pattern.

Histograms

In DataSHIELD's histogram outliers are not shown. The text summary of the function printed to the client screen informs the user of the presence of classes (bins) with a count smaller than the minimal cell count set by data providers.

ds.histogram(x='D$LAB_HDL')

ds.histogram(x='D$LAB_HDL', type='split')
#Warning: study1: 1 invalid cells
#Warning: study2: 1 invalid cells

Contour plots

Contour plots are used to visualize a correlation pattern that would traditionally be determined using a scatter plot (which can not be used in DataSHIELD as it is potentially disclosive).

ds.contourPlot(x='D$LAB_TSC', y='D$LAB_HDL')
#study1: Number of invalid cells (cells with counts >0 and <5) is 83
#study2: Number of invalid cells (cells with counts >0 and <5) is 97

Heat map plots

An alternative way to visualise correlation between variables is via a heat map plot.

ds.heatmapPlot(x='D$LAB_TSC', y='D$LAB_HDL')
#study1: Number of invalid cells (cells with counts >0 and <5) is 92
#study2: Number of invalid cells (cells with counts >0 and <5) is 93

 

The functions ds.contourPlot and ds.heatmapPlot use the range (mimumum and maximum values) of the x and y vectors in the process of generating the graph. But in DataSHIELD the minimum and maximum values cannot be returned because they are potentially disclosive; hence what is actually returned for these plots is the 'obscured' minimum and maximum. As a consequence the number of invalid cells, in the grid density matrix used for the plot, reported after running the functions can change slightly from one run to another. In the above output for example the number of invalid cells are respectively 83 and 97 for study1 and study2. These figures can change if the command is ran again but we should not be alarmed by this as it does not affect the plot itself. It was a deliberate decision to ensure the real minimum and maximum values are not returned.

Sub-setting

Sub-setting is particularly useful in statistical analyses to break down variables or tables of variables into groups for analysis. Repeated sub-setting, however, can lead to thinning of the data to individual-level records that are disclosive (e.g. the statistical mean of a single value point is the value itself). Therefore, DataSHIELD does not subset an object below the minimal cell count set by the data providers (typically this is ≤ 4 observations).

In DataSHIELD there are currently 3 functions that allow us to generate subsets data:

Sub-setting using ds.subsetByClass

ds.subsetByClass(x = 'D', subsets = "GenderTables", variables = 'GENDER')

Running ds.subsetByClass on a data frame without specifying the categorical variable in the argument variables will create a subset of all categorical variables. If the data frame holds many categorical variables the number of subsets produces might be too large - many of which may not be of interest for the analysis.

Sub-setting using ds.names

In the previous example, the GENDER variable in assigned data frame D had females coded as 0 and males coded as 1. When GENDER was subset using the ds.subsetByClass  function, two subset tables were generated for each study dataset
one for females and one for males.

ds.names('GenderTables')
#$study1
#[1] "GENDER.level_0" "GENDER.level_1"

#$study2
#[1] "GENDER.level_0" "GENDER.level_1"

Sub-setting using ds.meanByClass

The ds.meanByClass function generates subset tables similar to ds.subsetByClass but additionally calculates the mean, standard deviation and size for each subset for specific numeric variables.

ds.meanByClass(x='D', outvar='LAB_HDL', covar='GENDER')
#Generating the required subset tables (this may take couple of minutes, please do not interrupt!)
#--study1
#  GENDER...
#--study2
#  GENDER...
#LAB_HDL - Processing subset table 1 of 2...
#LAB_HDL - Processing subset table 2 of 2...
#                 D.GENDER0    D.GENDER1
#LAB_HDL(length)  "2677"       "2574"
#LAB_HDL(mean&sd) "1.51(0.44)" "1.62(0.4)"

The outvar argument can be a vector of several numeric variables that the size, mean and sd is calculated for. But the number of categorical variables in the argument covar is limited to 3. This, because beyond that limit continuous sub-setting may lead to tables that hold a number of observation lower than the minimum cell count set by the data providers.

Sub-setting using ds.subset

The function ds.subset allows general sub-setting of different data types e.g. categorical, numeric, character, data frame, matrix. It is also possible to subset rows (the individual records). No output is returned to the client screen, the generated subsets are stored in the server-side R session.

ds.subset(x='D', subset='D_without_NA', completeCases=TRUE)
#In order to indicate that a generated subset dataframe or vector is invalid all values within it are set to NA!

The ds.subset function always prints an invalid message to the client screen to inform if missing values exist in a subset. An invalid message also denotes subsets that contain less than the minimum cell count determined by data providers.

ds.subset(x='D', subset='BMI25plus', logicalOperator='PM_BMI_CONTINUOUS>=', threshold=25)
#In order to indicate that a generated subset dataframe or vector is invalid all values within it are set to NA!

The subset of data retains the same variables names i.e. column names

ds.quantileMean('BMI25plus$PM_BMI_CONTINUOUS', type='split')
# $study1
#      5%     10%     25%     50%     75%     90%     95%    Mean 
# 25.3500 25.7100 27.1500 29.2000 32.0600 34.6560 36.4980 29.9019 
# $study2
#       5%      10%      25%      50%      75%      90%      95%     Mean 
# 25.46900 25.91800 27.19000 29.27000 32.20500 34.76200 36.24300 29.92606 


ds.histogram('BMI25plus$PM_BMI_CONTINUOUS')

Modelling

Horizontal DataSHIELD allows the fitting of:

In GLM function the outcome can be modelled as continuous, or categorical (binomial or discrete). The error to use in the model can follow a range of distribution including gaussian, binomial, Gamma and poisson. In this section only one example will be shown, for more examples please see the manual help page for the function.

Generalised linear models

ds.glm(formula=D$DIS_DIAB~D$PM_BMI_CONTINUOUS+D$LAB_HDL*D$GENDER, family='binomial')
#Iteration 1...
#CURRENT DEVIANCE:      5772.52971970323
#Iteration 2...
#CURRENT DEVIANCE:      1316.4695853419
#Iteration 3...
#CURRENT DEVIANCE:      725.530885478789
#Iteration 4...
#CURRENT DEVIANCE:      574.040916492609
#Iteration 5...
#CURRENT DEVIANCE:      539.364843636719
#Iteration 6...
#CURRENT DEVIANCE:      534.529367269196
#Iteration 7...
#CURRENT DEVIANCE:      534.369349024873
#Iteration 8...
#CURRENT DEVIANCE:      534.369101005548
#Iteration 9...
#CURRENT DEVIANCE:      534.369101004808
#SUMMARY OF MODEL STATE after iteration 9
#Current deviance 534.369101004808 on 4159 degrees of freedom
#Convergence criterion TRUE (1.38346480863211e-12)
#beta: -6.90641416691308 0.142256253558181 -0.96744073975236 -1.40945273343361 0.646007073975006
#Information matrix overall:
#                  (Intercept) PM_BMI_CONTINUOUS    LAB_HDL   GENDER1
#(Intercept)          52.47803         1624.8945   71.78440  16.77192
#PM_BMI_CONTINUOUS  1624.89450        51515.6450 2204.90085 503.20484
#LAB_HDL              71.78440         2204.9008  109.48855  25.91140
#GENDER1              16.77192          503.2048   25.91140  16.77192
#LAB_HDL:GENDER1      25.91140          774.1803   42.87626  25.91140
#                  LAB_HDL:GENDER1
#(Intercept)              25.91140
#PM_BMI_CONTINUOUS       774.18028
#LAB_HDL                  42.87626
#GENDER1                  25.91140
#LAB_HDL:GENDER1          42.87626
#Score vector overall:
#                           [,1]
#(Intercept)       -3.610710e-10
#PM_BMI_CONTINUOUS -9.867819e-09
#LAB_HDL           -6.308052e-10
#GENDER1           -2.910556e-10
#LAB_HDL:GENDER1   -5.339693e-10
#Current deviance: 534.369101004808
#$formula
#[1] "D$DIS_DIAB ~ D$PM_BMI_CONTINUOUS + D$LAB_HDL * D$GENDER"
#$family
#Family: binomial 
#Link function: logit 
#
#$coefficients
#                    Estimate Std. Error    z-value      p-value low0.95CI.LP
#(Intercept)       -6.9064142 1.08980103 -6.3373166 2.338013e-10  -9.04238494
#PM_BMI_CONTINUOUS  0.1422563 0.02932171  4.8515676 1.224894e-06   0.08478676
#LAB_HDL           -0.9674407 0.36306348 -2.6646601 7.706618e-03  -1.67903208
#GENDER1           -1.4094527 1.06921103 -1.3182175 1.874308e-01  -3.50506784
#LAB_HDL:GENDER1    0.6460071 0.69410419  0.9307062 3.520056e-01  -0.71441214
#                  high0.95CI.LP       P_OR low0.95CI.P_OR high0.95CI.P_OR
#(Intercept)          -4.7704434 0.00100034   0.0001182744     0.008405372
#PM_BMI_CONTINUOUS     0.1997257 1.15287204   1.0884849336     1.221067831
#LAB_HDL              -0.2558494 0.38005445   0.1865544594     0.774258560
#GENDER1               0.6861624 0.24427693   0.0300447352     1.986079051
#LAB_HDL:GENDER1       2.0064263 1.90790747   0.4894797709     7.436693232
#$dev
#[1] 534.3691
#$df
#[1] 4159
#$nsubs
#[1] 4164
#$iter
#[1] 9
#attr(,"class")
#[1] "glmds"

After every iteration in the glm, each study returns non disclosive summaries (a score vector and an information matrix) that are combined on the client R session. The model is fitted again with the updated beta coefficients, this iterative process continues until convergence or the maximum number of iterations is reached. The output of ds.glm returns the final pooled score vector and information along with some information about the convergence and the final pooled beta coefficients.

 

 

You have now sat our basic DataSHIELD training. Remember you can:

All other DataSHIELD enquiries should go to datashield-research@bristol.ac.uk