...
Note | ||
---|---|---|
| ||
It is recommended that you familiarise yourself with R first by sitting our Introduction to R tutorial. It also requires that you have the DataSHIELD training environment installed on your machine, see our Installation Instructions for Linux, Windows, or Mac. |
Tip | ||
---|---|---|
| ||
DataSHIELD support is freely available in the DataSHIELD forum by the DataSHIELD community. Please use this as the first port of call for any problems you may be having, it is monitored closely for new threads. DataSHIELD bespoke user support and also user training classes are offered on a fee-paying basis. Please enquire at datashield@newcastle.ac.uk for current prices. |
...
5: Subsetting
6: Modelling
Quick reminder for logging in:
Expand | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Follow instructions to Startthe Opal VMs.Recall from the installation instructions, the Opal web interface is a simple check to tell if the VMs have started. Load the following urls, waiting at least 1 minute after starting the training VMs. Start R/RStudioLoad Packages
Build your login dataframe
|
...
- The
ds.histogram
function can be used to create a histogram ofLAB_HDL
that is in the assigned variable dataframe (named "DDST", by default). The default analysis is set to run on separate data from all studies. Note that Study 1 contains 2 invalid cells (bins) - those bins contain counts less than the data provider minimal cell count.
...
Code Block | ||
---|---|---|
| ||
ds.histogram(x='D$LABDST$LAB_HDL', datasources = connections) |
...
Code Block | ||||
---|---|---|---|---|
| ||||
Aggregated (exists("DDST")) [=============================================================] 100% / 0s Aggregated (classDS("D$LABDST$LAB_HDL")) [====================================================] 100% / 0s Aggregated (histogramDS1(D$LABDST$LAB_HDL,1,3,0.25)) [========================================] 100% / 0s Aggregated (histogramDS2(D$LABDST$LAB_HDL,10,-0.153421749557465,3.0579610811785,1,3,0.25)) [==] 100% / 0s Warning: study1: 2 invalid cells Warning: study2: 0 invalid cells [[1]] $breaks [1] -0.1534217 0.1677165 0.4888548 0.8099931 1.1311314 1.4522697 1.7734079 2.0945462 2.4156845 2.7368228 [11] 3.0579611 $counts [1] 0 18 51 172 443 550 387 153 25 0 $density [1] 0.00000000 0.03108742 0.08808103 0.29705758 0.76509598 0.94989343 0.66837956 0.26424308 0.04317697 0.00000000 $mids [1] 0.007147392 0.328285675 0.649423958 0.970562241 1.291700524 1.612838807 1.933977090 2.255115373 2.576253657 [10] 2.897391940 $xname [1] "xvect" $equidist [1] TRUE attr(,"class") [1] "histogram" [[2]] $breaks [1] -0.1534217 0.1677165 0.4888548 0.8099931 1.1311314 1.4522697 1.7734079 2.0945462 2.4156845 2.7368228 [11] 3.0579611 $counts [1] 9 19 83 275 604 769 545 182 42 5 $density [1] 0.01106408 0.02335750 0.10203539 0.33806906 0.74252258 0.94536402 0.66999140 0.22374025 0.05163237 0.00614671 $mids [1] 0.007147392 0.328285675 0.649423958 0.970562241 1.291700524 1.612838807 1.933977090 2.255115373 2.576253657 [10] 2.897391940 $xname [1] "xvect" $equidist [1] TRUE attr(,"class") [1] "histogram" |
...
Code Block | ||
---|---|---|
| ||
ds.histogram(x='D$LABDST$LAB_HDL', type = 'combine', datasources = connections) |
...
Code Block | ||||
---|---|---|---|---|
| ||||
Aggregated (exists("DDST")) [=============================================================] 100% / 0s Aggregated (classDS("D$LABDST$LAB_HDL")) [====================================================] 100% / 0s Aggregated (histogramDS1(D$LABDST$LAB_HDL,1,3,0.25)) [========================================] 100% / 0s Aggregated (histogramDS2(D$LABDST$LAB_HDL,10,-0.153421749557465,3.0579610811785,1,3,0.25)) [==] 100% / 0s $breaks [1] -0.1534217 0.1677165 0.4888548 0.8099931 1.1311314 1.4522697 1.7734079 2.0945462 2.4156845 2.7368228 [11] 3.0579611 $counts [1] 9 37 134 447 1047 1319 932 335 67 5 $density [1] 0.003688026 0.018148307 0.063372138 0.211708879 0.502539521 0.631752481 0.446123653 0.162661110 0.031603113 [10] 0.002048903 $mids [1] 0.007147392 0.328285675 0.649423958 0.970562241 1.291700524 1.612838807 1.933977090 2.255115373 2.576253657 [10] 2.897391940 $xname [1] "xvect" $equidist [1] TRUE $intensities [1] 0.003688026 0.018148307 0.063372138 0.211708879 0.502539521 0.631752481 0.446123653 0.162661110 0.031603113 [10] 0.002048903 attr(,"class") [1] "histogram" |
...
Code Block | ||
---|---|---|
| ||
ds.contourPlot(x='D$LABDST$LAB_TSC', y='D$LABDST$LAB_HDL', datasources = connections) |
...
Code Block | ||
---|---|---|
| ||
ds.heatmapPlot(x='D$LABDST$LAB_TSC', y='D$LABDST$LAB_HDL', datasources = connections) |
...
Code Block | ||||
---|---|---|---|---|
| ||||
Aggregated (exists("DDST")) [=============================================================] 100% / 0s Aggregated (exists("DDST")) [=============================================================] 100% / 0s Aggregated (classDS("D$LABDST$LAB_TSC")) [====================================================] 100% / 0s Aggregated (classDS("D$LABDST$LAB_HDL")) [====================================================] 100% / 0s Aggregated (rangeDS( D$LABDST$LAB_TSC )) [====================================================] 100% / 0s Aggregated (rangeDS( D$LABDST$LAB_HDL )) [====================================================] 100% / 0s Aggregated (densityGridDS(D$LABDST$LAB_TSC,D$LABDST$LAB_HDL,TRUE,1.03336178741064,10.5673103958328,-0.1460271... study1: Number of invalid cells (cells with counts >0 and < nfilter.tab ) is 63 study2: Number of invalid cells (cells with counts >0 and < nfilter.tab ) is 74 |
...
- 1: Introduction and logging in
- 2: Basic statistics and data manipulations
- 3: Assign functions and tables
- 4: Plotting graphs
- 5: SubsettingSubsetting
- 6: Modelling
Tip |
---|
Also remember you can:
|
...